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Abstract. In 2025, the author and Tomoo Matsumura found a bijective RSK
correspondence of type C for King tableaux with Berele, Lee and Sundaram’s
ideas all together. We briefly explain this progress and mention a conjecture on
the generating function of semistandard oscillating tableaux.
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1. Introduction

In 2025, the author and Tomoo Matsumura (International Christian University)
found a bijective RSK correspondence of type C for King tableaux with Berele,
Lee and Sundaram’s ideas altogether. In this note, we briefly explain this progress
and mention a conjecture on the generating function of semistandard oscillating
tableaux.

In combinatorics of Young tableaux, there is a series of important results which
we often call an RS (Robinson-Schensted) or RSK (Robinson-Schensted-Knuth)
correspondence; there are many variants such as a “dual” RSK, though. As shown
in the table below, Type A RS, RSK for Young tableaux and type C RS correspon-
dences for King tableaux have been already established. However, we have been
missing ??? part since initiation of the theory on King tableaux in 1976. Here,
our progress fills this gap.
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RS RSK

type A Robinson-Schensted Knuth

type C Berele ???

Now we wish to mention three particular authors.

• Berele (1986) [1]
• Sundaram (1986) [4]
• Lee (2025) [3]

Berele found a type C RS correspondence with its Q-symbol oscillating tableaux .
Sundaram was almost close to a type C RSK-correspondence. However, at that
time of her writing, there was no precise formulation of an appropriate Q-symbol
for this purpose. Instead, she discussed certain triples including King, oscillating
and Littlewood-Richardson tableaux. After about 40 years, Lee then introduced
a notion of semistandard oscillating tableaux in context of Kashiwara’s crystal
theory.

2. type C RSK correspondence

Following [2], here we review basic terms and main ideas.
Consider barred numbers 1, . . . , k and let [k] = {1, 1, . . . , k, k}. Define the sym-

plectic order

1 < 1 < 2 < 2 < · · · < k < k.

Definition 2.1. A King tableau (KT) of shape λ is a filling of the Young diagram
of λ on the alphabet [k] with all of the following.

(1) Entries are weakly increasing along rows.
(2) Entries are strictly increasing down columns.
(3) All entries in row i are ≥ i (symplectic condition).

Denote KTk(λ) by the set of King tableaux of entries [k] of shape λ.

Now we are going to define Berele insertion T →x for a KT T and x ∈ [k].
Define T →x with a series of row-insertions of type A except the following case:
If row i contains at least one i, and we row-insert i to this row, then, instead of

adding i and bumping i to the (i+ 1)-st row,

(1) replace the first i to i,
(2) replace the first i to empty box,

row i: i i · · · i i i · · · → i · · · i i i · · ·

and play jeu de taquin (as an SSYT of entries [k]) with this empty box. As Berele
showed [1], the resulting tableau is always King.
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Definition 2.2. A Knuth array w of length n is a two-line array

w =

 u1 · · · un

v1 · · · vn


such that uj ∈ [l], vj ∈ [k] with the following lexicographic conditions.

(1) uj ≤ uj+1.
(2) uj = uj+1 =⇒ vj ≤ vj+1.

Denote the set of such arrays by Al
k.

A skew shape is a horizontal strip if it contains at most one box at each column.

For example, lightgray boxes indicate such.

Definition 2.3. A k-semistandard oscillating tableau (k-SSOT) of the final shape
λ is a finite sequence S = (S1, S

′2, S2, S
′3, . . . , S

′k, Sk) of partitions such that

(1) Si ⊇ S
′i+1 (1 ≤ i ≤ k − 1) and S

′i ⊆ Si (2 ≤ i ≤ k). Moreover, Si\S ′i+1,
Si\S ′i are horizontal strips.

(2) Sk = λ.

Denote by SSOTk(λ) the set of all such SSOTs.

This is a technical definition. More intuitively, this is a sequence of partitions
starting at S

′1 = ∅ and ending at λ such that at Si ⊇ S
′i+1, as the first part of a

step i, we delete several boxes so that those form a horizontal strip and at S
′i ⊆ Si,

as the second part of the step i, we add several boxes similarly. It is a good idea
to think that we either add or delete one box at one substep. At an addition step,
we add boxes from left and at a deletion step, we delete them from right . Each
partition in such S must have at most k rows since at each step S

′i ⊆ Si, we add
at most one box to columns.

Remark 2.4. We borrowed this idea from Lee [3]. However, this definition is
slightly different from his. He allows it to end with deleting boxes at the final step.
The purpose of this modification is to construct the bijective RSK correspondence
with Berele insertion.

There is a convenient way to compactly express an SSOT S within one multiset-
valued tableau. Every time a box is added or deleted at a substep of S, we record
its step number into a tableau (of possibly larger than the final shape) at the same
position. For example, we can encode the above S as(

1 1 , 2 ,
2 2

2
,

3 3
,

3
)
.
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All together, we identify S with

1 12233 23

2

Definition 2.5. From

w =

 u1 · · · un

v1 · · · vn

 ∈ Al
k
,

we construct a pair of tableaux of the same shape

(P (w), Q(w)) ∈ KTk(λ)× SSOTln(λ)

for some λ (ℓ(λ) ≤ k, l) as follows. Start with (P0(w), Q0(w)) = (∅, ∅). For j ≥ 1,
let

Pj(w) = Pj−1(w) →vj (Berele insertion)

and Qj(w) be the multiset-valued tableau with placing uj into the box which we
added or deleted at Pj−1(w) →vj. Finally, set (PC(w), QC(w)) = (Pn(w), Qn(w)).
In fact, QC(w) is an SSOT [2, Lemma 4.13].

Example 2.6. Let k = 2, l = 5, n = 11,

w =

 1 1 1 2 3 3 4 4 4 5 5

1 2 2 2 1 1 1 1 1 1 2

 .

We find that

1 → 1 2 → 1 2 2 →
1 2 2

2
→

2 2

2

→ 1 2 → 2 →
1

2
→

1 1

2
→

1

2
→

1 2

2
.

Thus,

(P (w), Q(w)) =


1

2

,

1 14455 13

234

 .

4



Theorem 2.7 (RSK correspondence of type C [2, Theorem 4.17]).

Φ = ΦC : Al
k
→

⋃
ℓ(λ)≤k,l

KTk(λ)× SSOTl(λ), w 7→ (PC(w), QC(w))

is a bijection.

The key idea of the proof is the standardization of an array to use Berele’s
correspondence.

Now we generalize this in the unbounded case. Let

[∞] = {1, 2, . . . }, [∞] = {1, 1, 2, 2, . . . }
and

A∞
∞ =

w =

 u1 · · · un

v1 · · · vn

∣∣∣uj ∈ [∞], vj ∈ [∞], n ≥ 0

 .

Recall from Theorem 2.7 that for all k, l ≥ 1,

Φ = ΦC = Φl
k
: Al

k
→

⋃
ℓ(λ)≤k,l

KTk(λ)× SSOTl(λ), w 7→ (PC(w), QC(w))

is a bijection.

Given w =

 u1 · · · un

v1 · · · vn

 ∈ A∞
∞, define

Φ = Φ∞
∞ : A∞

∞ →
⋃
λ

KT(λ)× SSOT(λ)

as follows. Take l = un and let k be the minimal integer such that vj ≤ k for all j.
Then we can think w as w ∈ Al

k
so that Φ(w) := Φl

k
(w) makes sense.

Theorem 2.8.

Φ : A∞
∞ →

⋃
λ

KT(λ)× SSOT(λ)

is a bijection.

Proof. First, we show that Φ is surjective. Suppose (T, S) ∈
⋃

λKT(λ)×SSOT(λ).
Then

(T, S) ∈ KTk(λ)× SSOTl(λ)

for some k, l and a partition λ. We know that Φl
k
is surjective. Thus, Φl

k
(w) =

(T, S) for some w ∈ Al
k
(⊆ A∞

∞). Therefore, Φ(w) = Φl
k
(w) = (T, S).

Next, let us see that Φ is injective. Suppose Φ(w) = Φ(w′), say this is (T, S).
Let l be the maximum of all entries in S and k be the minimal integer such that
T (i, j) ≤ k for all i, j. The assumption Φ(w) = Φ(w′) now implies Φl

k
(w) = Φl

k
(w′)

and hence w = w′ by injectivity of Φl
k
. □
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This bijection derives an expansion of Cauchy identity with two generating func-
tions as we now explain. Let x± = (x1, x

−1
1 , . . . ) and y = (y1, . . . ) be two sets of

infinitely many variables. For any partition λ, define symplectic Schur function

spλ(x
±) =

∑
T∈KT(λ)

xT , xT =
∏
i,j

xT (i,j)

and the SSOT function

ssλ(y) =
∑

S∈SSOT(λ)

yS.

Corollary 2.9.
∞∏

i,j=1

(1− xjyi)
−1(1− x−1

j yi)
−1 =

∑
λ

spλ(x
±)ssλ(y).

where the sum takes over all partitions λ.

It would be also nice if we could understand this in terms of the ring of symmetric
functions and the representation theory of the symplectic groups . We take another
opportunity to discuss such ideas.

3. Conjecture

Conjecture 3.1. For a partition λ, we have

ssλ(y) =

(∏
i<j

(1− yiyj)
−1

)
sλ(y).

Recall that this product is Littlewood generating function:∏
i<j

(1− yiyj)
−1 =

∑
β′ even

sβ(y).

Here, sβ is the Schur function and a partition is even if all its rows have even
number of boxes and β′ means the conjugate of a partition β. The product of two
Schur functions sβsλ reminds us Littlewood-Richardson rule. We thus expect that

ssλ(y) =
∑
β,µ

cµβλsµ(y)

where the sum takes over all partitions β, µ such that β′ is even, µ ⊇ λ, |µ| − |λ|
(= |β|) is even, say 2r, µ is obtained by adding 2r boxes to λ, at most r new
boxes in each row and cµβλ the LR coefficient. This gives an expansion of ssλ(y) as
an infinite sum of Schur functions with positive integer coefficients. It should be
possible to discuss properties of such a generating function. At least, we proved
that it is symmetric in [2] with constructing Bender-Knuth-like involution.
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