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Introduction

This talk is all about
two formulas for enumeration of
bigrassmannian permutations over
permutations and ASMs by
inversions.
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Def. (i,J) is an inversion of a permutation w of
{1,2,...,n}if i <j and w(i) > w(j). The inversion
statistic of w is the number of such pairs

t(w) = [{(i,J) |7 <Jj and w(i) > w(j)}|
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Example:
w = 321

Inversion: (1,2),(1,3),(2,3)
= ((w) = 3.
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Def
Say a permutation w € S, is bigrassmannian if there
exists a unique pair (/,/) such that w=(i) > w™(i + 1)
and w(j) > w(j + 1).
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The bigrassmannian statistic for w is
B(w)=|{veS,|v<wand v is bigrassmannian}|

with < Bruhat order.
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Thm 1 (Kobayashi 2011)

Bw)= > (wl(i) —w())

i<j,w(i)>w(j)

Theorem 1

for each w € §,,.

We can interpret this formula as weighted counting of
inversions.
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Theorem 1 Extend this formula:

permutations — Alternating sign
matrices
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A = (aj): n X n matrix
Def: A is an alternating sign matrix (ASM) if for all
i,J, we have

J
aj € {-1,0,1}, > aw €{0,1},
_ k=1
Z a € {0,1} and Z aj = Zakf =1.
k=1 k=1 k=1

A,:= the set of all alternating sign matrices of size n.



Examples of ASM.

321 =

o~ O

o O+



Fact: there exists an exntension of Bruhat order onto A,
such that

(A,, <) is MacNeille completion of (S,, <).

— A, is a distributive lattice (graded).






Def bigrassmannian statistics for ASMs:

B(B) =[{A€ A, | A< B and A is bigrassmannian}|.

cf.

B(w)=[|{veS,|v<wand v is bigrassmannian}|






Def We say that (/,/, k, /) is an inversion of A if
i <Jj,k<Iland ajaj # 0. Also, let us say that / — k is
the weight of this inversion. Define the inversion
statistic of A by

/(A): Z djkdijl-

i<jk<l



an inversion of weight 1.

- O O
o = O
O O =

an inversion of weight 2.



Thm 2 (Kobayashi 2019)
For each A € A,,, we have:

Theorem 2 /B(A) — Z (/ — k)ajkai/‘



Theorem 2







Further research

m Find Z q' A,

2
Theorem 2 AE.An

m What about type B, D, Affine?
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