MOBIUS FUNCTIONS OF HIGHER RANK AND DIRICHLET
SERIES

MASATO KOBAYASHI

ABSTRACT. We introduce Mdébius functions of higher rank, a new class of arith-
metic functions, so that the classical Mobius function is of rank 2. With this
idea, we evaluate Dirichlet series on the sum of reciprocal square of all r-free
numbers. For the proof, Riemann zeta function and cyclotomic polynomials
play a key role.
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1. INTRODUCTION

1.1. Classical Mobius and zeta functions. The Mobius function plays an im-
portant role in number theory. Its definition is simple: u(n) = 1 and

(=1)* n=p;---pg, primes p; all distinct,
p(n) = 2 :
0 p* | n for some prime p.

Riemann zeta function is also another important topic in number theory. It is
an analytic function of complex variable s (pole at 1):

() =3 ni Re(s) > 1.

n=1
It has an infinite product (known as the Fuler product) expression:
¢s)= [ @=p7)"" Re(s)>1.
p:prime
See Titchmarsh [3] for more details. Table 1 shows the zeta values at positive even

integers up to 20.

TABLE 1. zeta values at even positive integers

2n | ((2n) || 2n ¢(2n)
2 12
9 m 12 6917
6 638512875
4 14
41 T |4 T
90 18243225
6 17716
6 ks 16 36177
945 325641566250
g 8 18 4386718
9450 38979295480125
10 20
10 T 20 1746117
93555 1531329465290625

There is a deep relation between the Mobius and zeta functions; we can “invert”

¢(s):

LR o V() R
@_; —— Re(s)>1.
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For instance, when s = 2, we obtain the inverse of Euler’s work ¢(2) = 7%/6 as

1 1 1 1 N' 1 &) 111
<1+§+§+4—2+?+"'> = = =1

(2 = oer 2 32 5

=1

1.2. Main results. In this article, we introduce Mo6bius functions of higher rank,
a new class of arithmetic functions, so that the classical Mobius function is of rank
2.

classical Mobius function pu = ps ‘

Mobius functions of higher rank u, (r=1,2,...,00) ‘

For a positive integer r, say n is r-free if there exists some prime p such that
p" divides n; thus, 2-free is square-free and 3-free is cube-free as usually said. We
will see that p,. is similar to g = ps: p,.(n) # 0 if and only if n is r-free (Section
3).

The main result of this article is to evaluate several Dirichlet series

Z fir (1)
ns
n:r-free

with r € {3,4,5} and s € {2, 3}.
Theorem 1.1 (s = 2). The following equalities hold:
ws(n) 45045
(1) Z 3n2 -

n:3-free - 6917{4.
pa(n) 630
(2) ; 2 = 6
ps(n) 1091215125
3 = )
) 5Zf n? 17461178

Theorem 1.2 (s = 3).

n3 nd | 43867x12

n:3-free n:3-free

Here, ps, p14, pt5 are the Mobius functions of rank 3, 4, 5 respectively. For the
proofs, it is key to understand interactions of the following three concepts:
e Fuler product for Riemann zeta function
e Mobius functions of higher rank
e Cyclotomic polynomials
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We will give these details later.
Additional results: it is possible to generalize the “Mobius inversion formula”
to higher rank: for n = p{"* - - - p;"*, the prime factorization of n, let

my(n) = |{j|m; = 3,4 mod 6}|.

Theorem 1.3 (Mobius inversion of rank 3).

(waﬁﬁﬂ>1:: E: (=)™

= _.m1 mr
n=t n=p;"*py

m;#2,5 mod 6
As a by-product, we get a new expression of :
o (% (Hi+i+i+i+i_i+i+...)>”4,
691 22 32 52 62 T2 8 10
1.3. Notation.

e Let N denote the set of positive integers. In addition, N? means the set of
square numbers {12,22 32 ... 1.
e Often, writing
n=pi"-p*
means the factorization of n into distinct prime numbers (p; # p; for i # j)
with each m; positive unless otherwise specified.
e d|n means d divides n.

° H indicates an infinite product over all primes p.
p

2. PRELIMINARIES

Let us begin with recalling some fundamental definitions and facts on arithmetic
functions; you can find this topic in a standard textbook on number theory as
Apostol [2]. We thus omit most of the proofs here.

2.1. Arithmetic functions. An arithmetic function is a map
f:N—=C.

Example 2.1.
e Mobius function:
1 n=1,
p(n) =4 (=1)* n=p;--pg, primes p; all distinct,
0 p?|n for some prime p.

e Omega function: For n = p{" ... p/**

Qn) =mq + -+ my.

with p; primes,
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Liouville function: \(n) = (—1)%™,
Characteristic function: For a subset A C N,

xa(n) = {1 n € A,

0 n¢gA.
In particular, |p(n)| is a characteristic function of the set of 2-free numbers.
Constant function: 1(n) =1 for all n.
1 n=1,
0 n#l.

unit function: u(n) =

We say that an arithmetic function f is multiplicative if f(1) =1 and
f(mn) = f(m)f(n) whenever gcd(m,n)=1.
It is easy to check that u, A, 1, u are all multiplicative.

TABLE 2. Arithmetic functions

n |1 2 3 4 5 6 7 8 9 10
puin) |1 =1 =10 =1 1 -1 0 0 1
Qn)|lo 1 1 2 1 2 1 3 2 2
An) |1 =1 =11 -1 1 -1 -1 1 1
m)/1 1 1 1 1 1 1 1 1 1
wn) |1 0 0 0 0 0 0 0 0 0

2.2. Dirichlet series. For two arithmetic functions f and g, define the Dirichlet

product f * g by
n
(f * 9)(n) = ; fg (%)
The unit function v satisfies

fru=uxf=f
for all arithmetic functions f. If f x g = g * f = u, then we write ¢ = f~! and call
it the Dirichlet inverse of f; assuming f(1) # 0, there exists f~'.

Fact 2.2. Let f and g be arithmetic functions. Suppose they are multiplicative.
Then, so are f * g and f~1.

In this way, multiplicative functions form a group and = is indeed a group-
theoretic unit.

Remark 2.3. If multiplicative functions f, g satisfy
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f(™) =g(p™) for all primes p and m > 1,

then f(n) = g(n) for all n € N. Hence, to determine a multiplicative function, it
is enough to know values only at prime powers.

A Dirichlet series for f is a series in the form

for a complex number s (in this article, we deal with only s = 2,3 and convergent
series). Riemann zeta function is an example of such series with f(n) = 1(n) = 1.

Observe that
)( w)zifﬂmm>

n=1

for all f,g. Then classical results
1 n=1,
* 1
e = Y0 =g )

and
1 n = N? for some N,

0 otherwise

<wam:xmmw:{

imply the following:
Fact 2.4.

LB (5

@ (S (Sh) = X -3 iy -

n=1 n:square N=1

As a consequence, when s = 2, we have

a1 6 s A )

22 = Y LT T2 15

n=1

Once we introduce the Mobius functions of higher rank g, in the next section, we
can regard these as extremal cases at 7 = 2 and r = oo (as shown in Table 3):

) _ 5y ) 7
T 1
n:2-free n:oco-free
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TABLE 3. Main results (s = 2)

series value zeta expression factor of Euler product
6 1
Z N2n(271) 2 (2) L—p~
n:2-free
45045 4)((6
Z p3(n) ¢(4)¢(6) 1—p24pH
eyl n? 69174 ¢(2)¢(12)
u4(n) 630 <(4) -2 —4 —6
it >\ 1— _
2 ﬂ (@) potrey
n 1091215125 4)((10
Z N5(2) . (( )C( ) 1—p‘2—|—p_4—p_6+p_8
. 1746117 ¢(2)¢(20)
fhoo (1) w? ¢(4) _9 4 —6 _8
o 2\ 1 — _ — ...
Z_f n2 15 C(Q) p - +p p o +p

3. MOBIUS FUNCTIONS OF HIGHER RANK

For each natural number r or “r = o0”, define an arithmetic function

i N — {—1,0,1}

by
1 n=1,
pr(n) = (=1)ymttme p = p..p™ all m; <,
0 p" | n for some prime p.

For r = 0o, we understand that m; < oo always holds and p™ | n never happens.
Example 3.1. » = 1: This is just the unit function.

umw:wmz{lnzL

0 n#1 (that is, p*|n for some prime p).
r = 2: the classical M6bius function.

(=D* n=pipa---pr,
pa(n) = p(n) = ) :
0 p* | n for some prime p.
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pi3(n) = (—Lymtetme o= pi™ ™, my < 3,
0 p?| n for some prime p.

r = oo: the Liouville function.
poo(n) = A(n) = (=1)™ T m = p" -t
Definition 3.2. All together, we call {1, }22, the Mébius functions of higher rank.

It follows by definition

e (p™) = {é_l)m " N ;

for a prime p and m > 1. Observe that each p, is multiplicative; in particular,
|| is a characteristic function of r-free numbers.
We have already seen that

pxl=u and Ax1=yN2.

Now understand this as po x 1 = v and pi * 1 = xyN2. A natural question is: what
is p, % 1 for 3 < r < 00? Since p, and 1 are both multiplicative, so is u, * 1. Now
let us see what (g, * 1)(p™) is.

Proposition 3.3. Letr >3 and m > 1.
If m <r, then

1 m even,

(e 1)(p™) = {0  odd.

If m > r, then

0 r even.

(e ™) = {1 rod

Proof. Suppose m < r. Then

(= D)(P™) = po(d)

a|p™

= pr(1) + e (p) + 11, (P%) + -+ + 11 (p™)
=1+ (=1)+1+-+ (=17

)1 meven,
~ 10 m odd.
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If m > r, then

(tr+ D)(P™) = pe(d)
d|p™
= (1) + pe(p) + e (P?) + - + e (P™)
= pr(1) + pr(p) + () 4+ 4 (P H 04+ 40
=1+(-D+1+--+ (-1

~J1 rodd,
10 7 even.

Consequently, for n = pi™ ---p,"™*, the integer

(r 1) () = (e % 1) (PY™ -+ 0p*) = (e * D)(p7™) - -+ (e 1) (%)

is 1 if and only if all of factors (u, % 1)(p;”) are 1. Otherwise, i.e., (. % 1)(p;”) =
0 for some j, it is 0. This naturally leads to an interpretation of pu, x 1 as a
characteristic function of some set as follows. For each r > 3, define M,., a subset
of N:

e r odd or r = co: square numbers.
Mz=Ms=--=M,==N*(={neN|n=p" - p m; all even}).
e 1 even: ranked square numbers.
M, ={neN|n=p"---p.*, m; all even,m; <r}.
The sets M,’s (r even) are increasing:
My C Mg C Mg C--- C My, =N=.
Example 3.4.
My={neN|n=p" - --p* m; all even,m; < 4}
:{n€N|n:10rn:pf---pz}
=1{1,4,9,25, 36,49, 100, 121, 169, ... }.

Proposition 3.5. Let My = N and My = {1}. Then, for each r € N U {0}, the
Dirichlet product p, x 1 is a characteristic function of the set M,.:

1 neM,

(pr % 1)(n) = {0 e M.
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TABLE 4. pus and pg * 1
n \ 1 2 3 4 5 6 7 89 10

pusn) |1 -1 -1 1 -1 1 -1 01 1
(us*1)(n)[1 0 0 1 0 0 0 0 1 0

Proposition 3.6 (Mobius functions of higher rank and zeta). For r > 1 and

Re(s) > 1, we have
= u(n 1
( m) (=3 —
n n
n=1 neM,

Proof. This statement is equivalent to p,. x 1 = xy,. 0J

For clarity, we sometimes prefer to write

S pr (1) _ Z MT(n).

n n
n=1 n:r-free

In the next section, we will compute such sums for s = 2.

4. MAIN THEOREMS

Before going into main theorems, we briefly recall an important family of poly-
nomials in number theory for convenience.

4.1. Cyclotomic polynomials. The cyclotomic polynomial for n is

ouw)= [ (x— e,
1<k<n
ged(k,n)=1
This is indeed a polynomial of integer coefficients.
Example 4.1.
Oi(r)=x—1, ®y(z)=x+1, and &3(x)=2>+z+1.

An important relation to the Mobius function is:

Fact 4.2.
®,(z) = [J(a? — 1)3):

d|n

Exponents are 0, -1 so that ®,(z) (and @, (z)~! also) is a product of (x4 —1)’s.
Note that a factor x¢ — 1 looks like “1 — p=*” in the Euler product of ((s); this
idea will play a key role in the proofs below.
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4.2. Theorem (s = 2). We are now ready for computing three series in the middle
of Table 3.

Theorem 4.3.
n2 69174’
n:3-free ( ) 630
Han

(2) T
n:4-free
Z ,u5(n) B 1091215125
r 17461178

Proof of (1). Note that

<I>12(x) _ (x _ 1)u(12) (3;2 _ 1)#(6’) (xi% _ 1)#(4) ($4 _ 1)#(3) ($6 _ 1)#(2) ($12 _ 1)#(1)
(1-2?)(1—2")

= (1= 29(1 = 25 =1—a2? 42
Then, we have
115(n) — 1)t
n:3-free n’ o O<ng<3 p o m )2
=[[a-p7+p™
_ —p )1 =p ")
L (L=p )1 —p)
e
¢(2)¢(12)
6

ot 7° 6 638512875
90 945 2 691712
45045

6917t

Proof of (2). Since

(1—2%)(1—2®)

1—2* 4+ 2*—2° ,
1— a2t
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we have
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> et ¥

n:4-free 0<m;<4

(2)KE)
7' 6 9450
90 72 78
~ 630

76’

Proof of (3). The idea is quite similar. From the cyclotomic polynomial

we obtain

(1—2%)(1 —2%)

-1 2 4 6 8
(1= (1 = 2) r+ar —x + a7,

(I)Q()(I) =

(_1 my+t-tmg

M5(")_
2 T T L GR ey

n:5-free 0<m;<5

~ ot 7% 6 1531329465290625
"~ 90 93555 72 174611720

1091215125
17461178
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4.3. Mobius inversion of rank 3. Recall that p; ' = 1. Thus, the equality

[e%e) -1 [ee)
( u(n)> N b
n=1 n? n=1 ne

can be regarded as “Mobius inversion of rank 2”. Here we consider the case of
rank 3.
: o o m
For the prime factorization n = pi** - - - p,

of n into distinct primes, let
ms(n) = [{j| m; = 3,4 mod 6}.
Theorem 4.4 (Mébius inversion of rank 3).

(OO M)l - ¥ (=)™

= _mq mp
n=1 n=p;"1--p;

m;#2,5 mod 6

Proof. We know that

Z /L?;fsn) _ //'3(”) _ H(l _ (pfl)s + (p72)s).

ns
n:3-free p

Now the idea is to find the inverse (formal power series) of 1 — z + z*:
(1—x+ 23! = dg(x)?
(1—2*)(1 —2%)

a (1 —x)(1 — %)
14z —2 -2t
- 1 —26

oo
= Zxﬁi(l + o —a2® —at).
i=0

That is,
oo 1 )
/1/ n —0s? S S —4a8
3n£ )=H<Zp “(l+p—p*—p 4))
n=1 p =0

It follows that

[e§) —1 o0 _1)ymx(n)
n —6s1 —5 —3s —4s 1
I D R Y =
n=1 n ; —,1 "k n

n=p, Pr
m;#2,5 mod 6
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TABLE 5. us(n) and ps'(n)
n 1 2 3 4 5 6 7 8 9 10

ps(n) |1 -1 —1 1 —1 1 -1 0 1 1
pz'tn){1 1 1 0 1 1 1 -1 0 1

Corollary 4.5.
1 m = 0,1 mod 6,
pst(P™) =<0 m=275 mod6,
—1 m=3,4 mod 6.

Corollary 4.6.

i py'(n) 6917t
L= n? 450457

Proof. This is the inverse of the sum

 fs(n) _ 3 pa(n) _ 45045
— n2 n2 69174

n:3-free

proved in Theorem 4.3. 0

Let us put it this way; this gives a new kind of an infinite series expression of 7
in terms of 3"

(#0451 11 1 1 L A
=\ 601 2 TR T Te T e g2 p '

4.4. Theorem (s = 3). We evaluated several Dirichlet series at s = 2 so that
many zeta values at even integers {((2n)} appeared. On the one hand, exact
values of ((2n) are known in terms of Bernoulli numbers; on the other hand, not
much is known on {¢(2n + 1)}.

e Apéry [1] proved that ((3) is irrational in 1979.

e More recently, Zudilin [4] proved that at least one of ((5),((7),((9),((11)
is irrational.

e Exact value of any ((2n + 1) is not known.

However, our method is helpful for understanding some relation of particular
series involving {((2n + 1)}. Let us see an example on s = 3, ((3) and ¢((9) here.

Lemma 4.7.

m Y L=

n:3-free
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@ Y ) Loty

n:3-free 3)C(18>
Proof. Take the cyclotomic polynomials
1—a° 3, 26 g
(139(37):1_3:3:1%—90 +2° an
(1-2%)(1 2" 3 6
) = =1- :
5() = T 1= ) v
Then
1 _ - 1—p™®  ((3)
i 1 1\3 2\3 — — d
P 1;[< + ™)+ 7)) H @ ™

Z :u3(n) _ H(l _ (pfl)S + (p72)3) _ H (1 _pig)(l _p718) _ C(G)C<9) .

e, » (L=p3)(1=pf)  ((3)C(18)
OJ
1 n 41247931725
Theorem 4.8. (n:g_zﬁee ﬁ) <n:3_zfree ’M?;L(?) )> = 36T
Proof. Thanks to Lemma 4.7, the left hand side is
@ B 7T_6 38979295480125 41247931725
C(18) 945 438678 43867712
OJ

5. FINAL REMARKS

5.1. Lambert series. Here, we record some of our results in a little different
form.
For a sequence a, of integers, its Lambert series is the formal power series

oo
>
1—an

n=1

Assume that a, = f(n) for some arithmetic function f. It turns out that the

\ f(n)e” is exactly Z f(d), that is, (f * 1)(N).

coefficient of =V in E
1—2zm
=1 N

Corollary 5.1. Forr > 3 odd or r = oo, we have

W

n=1



16 MASATO KOBAYASHI

In particular, this includes

i)\(n)m" :i$”2:w+x4+x9+x16+---
n:ll_xn n=1

as a special case.

Corollary 5.2. For r even, we have

e n
pr(n)x n
1 - xn B ’H’LZ m x .
n=1 n:n=p, 1--~pk k
m;<rT, mj; even

For example, r = 4,
Dz 2)x? 323 4zt 5)a°
p4(1) +M4() +N4<) +N4<) +“4<) 4.
1—x 1 — 22 1—2a3 1 — 24 1 —ab

—p gt g® g B0y A9 | 2100 4 121 L o160

5.2. Future research. We leave several ideas here for our future research.
(1) We expect that there are many more results on Dirichlet series

> f(n)a rs =2, f € {pnprx Lt 1Y
ns

n:r-free

(2) Suppose a multiplicative arithmetic function f satisfies

f@™) = f(¢™) for all primes p,q.

The Bell series for such f is the formal power series
By(z) =Y f(p™)a™
m=0

as B,(z) = 1 — z, for instance. Say f is cyclotomic if By(z) = ®,(x) for
some n; it is inverse cyclotomic if By(x) = ®,(z)~! for some n. Study a

series Z f(?;b)

n
(3) Describe details of y ! for r > 4.

for functions of this class.
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