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Abstract. Following Aguiló-Suñer-Torrens (2008), Kolesárová-Mesiar-Mordelová-
Sempi (2006) and Mayor-Suñer-Torrens (2005), we continue to develop a theory
of matrix representation for discrete copulas. To be more precise, we give char-
acterizations of meet-irreducible discrete copulas from an order-theoretical aspect:
we show that the set of all irreducible discrete copulas is a lattice in analogy with
Nelsen and Úbeda-Flores (2005). Moreover, we clarify its lattice structure related
to Kendall’s τ and Spearman’s ρ borrowing ideas from Coxeter groups.

1. Introduction

Copulas. The theory of copulas has been of fundamental importance in probability
and statistics. It dates back to Sklar’s Theorem (1959) [20]:

Fact 1.1. Let X,Y be two random variables with marginal distribution functions F
and G. Then there exists a copula C : [0, 1]2 → [0, 1] such that we can express the
joint distribution H of X and Y as H(x, y) = C(F (x), G(y)).

Since then, we have continued to develop this theory extensively. Quasi-copulas,
a more general concept, recently appeared in Alsina-Nelsen-Schweizer (1993) [4].
These days this idea has wide applications in other areas such as Fuzzy logic and
Quantitative finance.

Motivation. In this article, we focus on a certain class of copulas, discrete couplas.
Why do we study this class? Here we list some results to see its importance:
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• It has a lattice structure. This is analogous to Nelsen and Úbeda-Flores [14]
that all non-discrete copulas have a lattice structure.

• [16, Theorem 2.4] Every quasi-copula is a certain limit of discrete ones.
• Discrete quasi-copulas contain rich mathematical structures of not only a

matrix but also a group, a lattice and a vector space. In particular, a certain
partial order fits into a framework of the classic topic on Kendall’s τ and
Spearman’s ρ such as Daniels [5], Durbin-Stuart [6], Kruskal [10], Lehmann
[11] and Okamoto-Yanagitmoto [15].

• We can make the best use of matrices; as in the title, our study continues
recent (2000s) developments on matrix representation of discrete copulas.

In mathematics, it is a common idea to understand general objects in terms of
“smaller” ones; for example, each natural number is a product of prime numbers; each
element in a vector space is a linear combination of vectors in a basis. Furthermore,
such expressions are often unique.

Question 1.2. What about discrete copulas? Is this sort of argument possible?

The answer is yes. As mentioned above, discrete copulas form a lattice. We then
come to the fundamental fact in the lattice theory: in a finite distributive lattice,
each non-maximal element is the meet of meet-irreducible elements. However, we
could not find any references on discrete copulas from this aspect in spite of its
importance.

State of the art (Matrix representation). Figure 1 shows some state of the
art on matrix representation of discrete copulas; there, we see the correspondences
between five kinds of discrete quasi-copulas and square matrices: MM means meet-
irreducible matrices, PM permutation matrices, ASM alternating sign matrices, BM
bistochastic matrices and GBM generalized bistochastic matrices; see also [2] for
non-square variants. Although we deal with only the first three classes, it is easy to
write down several consequences for BM and GBM; details will appear in a subse-
quent publication. Our specific goal is to give explicit descriptions of meet-irreducible
copulas with matrix representations. For this purpose, we “borrow” some ideas from
Coxeter groups and Bruhat order.

Coxeter groups play a significant role in algebra, combinatorics and geometry
(initiated by H.S.M. Coxeter and afterward developed by Bourbaki around 1960).
Symmetric groups are indeed type A Coxeter groups equipped with a certain partial
order, called Bruhat order. The key idea with a connection to copulas is the following:

Fact 1.3. Concordance order on irreducible discrete copulas on {0, 1, . . . , n} is iso-
morphic to reverse Bruhat order on the symmetric group Sn.

This order plays a key role for studying a lattice structure of discrete copulas
together with matrix representation, as we shall see.
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Figure 1. recent developments on discrete quasi-coplulas
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Outline of the paper. In Section 2, we first set up definitions of discrete copulas
and quasi-copulas. After that, following [1, 9, 12], we recall correspondences between
copulas and matrices. Then we go into their poset structures. We show in Theorem
2.15 that the set of discrete irreducible quasi-copulas is a lattice in analogy with [14].
In Section 3, we give explicit characterizations of meet-irreducible copulas in terms
of matrix entries. We then observe some consequences on algebaic properties and
Kendall’s τ . Finally, Theorem 3.24 clarifies the relation between entries of discrete
copulas and the lattice structure. In Appendix, we give some basic terminology on
posets and Coxeter groups.

2. Copulas

Discrete quasi-copulas. To begin with, let us fix a positive integer n. Below, we
treat only a special class of quasi-copulas, discrete quasi-copulas on Ln = {0, 1, . . . , n}
(not on In = {0, 1

n
, . . . , 1}); we even omit the word “discrete” whenever no confusion

arises. For definitions and characterizations of general (quasi-)copulas, see Nelsen’s
book [13] as well as several recent papers [4, 7, 19].
Let L denote the closed interval [0, n] in R.
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Definition 2.1. A binary operation C : Ln×Ln → L is a (two-dimensional) discrete
copula if it satisfies all of the following:

C1: C(i, 0) = C(0, i) = 0 for all i ∈ Ln.
C2: C(i, n) = C(n, i) = i for all i ∈ Ln.
C3: C(i, j) + C(i′, j′) ≥ C(i, j′) + C(i′, j) for all i ≤ i′ and j ≤ j′ in Ln.

(2-increasing)

Definition 2.2. Say Q : Ln × Ln → L is a discrete quasi-copula if it satisfies the
following:

Q1: Q(i, 0) = Q(0, i) = 0 and Q(i, n) = Q(n, i) = i for all i ∈ Ln.
Q2: Q is non-decreasing in each component.
Q3: Q(i, j) + Q(i′, j′) ≥ Q(i, j ′) + Q(i′, j) for all i ≤ i′ and j ≤ j′ in Ln such

that at least one of {i, i′, j, j ′} is 0 or n. (2-increasing on the boundary)

A discrete quasi-copula which is not a copula is called a proper quasi-copula.
Thanks to C2 and Q1, the range of such operations always contains Ln.

Definition 2.3. A discrete copula is irreducible if its range is exactly Ln. Similarly,
a discrete quasi-copula is irreducible if its range is Ln.

Denote by Pn (Qn) the set of all irreducible discrete (quasi-)copulas on Ln. These
are our main objects in the sequel.

Remark 2.4. In the literature, it is more common to define these operations on
In = {0, 1

n
, . . . , 1} instead of Ln. However, there is no significant difference between

them. It is just up to a scale shift; see [1, Remark 4]. A merit of working on Ln

is that we can make the best use of matrices to represent quasi-copulas; identify a
quasi-copula Q with the matrix whose (i, j)-entry is Q(i, j). Although some authors
prefer to“xy-axis notation”, we stick to this matrix representation throughout. Note:
for simplicity, we omit 0 values in the zero-th row and column. For example, the

matrix

 0 1 1
0 1 2
1 2 3

 represents the quasi-copula Q such that Q(1, 1) = 0, Q(1, 2) =

Q(1, 3) = 1 and so on.

Permutation matrices (PM). We use notation [n] = {1, 2, . . . , n}. Let A = (aij)
be an n × n matrix.

Definition 2.5. Let A be a permutation matrix (PM): for all (i, j) ∈ [n] × [n], we
have aij ∈ {0, 1},

j∑
k=1

aik ∈ {0, 1},
i∑

k=1

akj ∈ {0, 1} and
n∑

k=1

aik =
n∑

k=1

akj = 1.



MEET-IRREDUCIBLE DISCRETE COPULAS 5

In other words, a 1 appears exactly once in every row and column of A and all
other entries are 0.

For example,

0 1 0
0 0 1
1 0 0

 is a PM. The permutation 231 tells positions of 1’s in each

row. Thus, it is often convenient to refer to such matrices as A(231). Obviously, PMs
have a group structure; the matrix multiplication corresponds to the composition of
permutations; inverse matrices therefore correspond to inverse permutations. Under
this identification, we sometimes write Sn (the symmetric group on [n]) to mean the
set of PMs of size n, by slight abuse of language.

Fact 2.6. [12, Proposition 6] A binary operation C on Ln is an irreducible discrete
copula if and only if there exists a unique PM A = (aij) such that

C(r, s) =


0 if r = 0 or s = 0,∑
i≤r
j≤s

aij otherwise,

for all (r, s) ∈ Ln × Ln and aij = C(i, j) + C(i − 1, j − 1) − C(i, j − 1) − C(i − 1, j)
for all (i, j) ∈ [n] × [n].

This correspondence C ↔ A is a bijection: Pn
∼= Sn as sets. Later, we improve

this to an isomorphism of posets.

Alternating sign matrices (ASM).

Definition 2.7. Let A be an alternating sign matrix (ASM): for all (i, j) ∈ [n]× [n],
we have aij ∈ {−1, 0, 1},

j∑
k=1

aik ∈ {0, 1},
i∑

k=1

akj ∈ {0, 1} and
n∑

k=1

aik =
n∑

k=1

akj = 1.

Denote by ASMn the set of all ASMs of size n.

Observe that every PM is an ASM. Say an ASM is proper if it is not a PM.

For example,

0 1 0
1 −1 1
0 1 0

 is a proper ASM. Note that this ASM does not have the

matrix inverse. As we shall see, instead of losing a group structure, ASMs behave
order-theoretically much better.
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Fact 2.8. [1, Proposition 8] A binary operation Q on Ln is an irreducible discrete
quasi-copula if and only if there exists a unique ASM A = (aij) such that

Q(r, s) =


0 if r = 0 or s = 0,∑
i≤r
j≤s

aij otherwise,

for all (r, s) ∈ Ln × Ln and aij = Q(i, j) + Q(i − 1, j − 1) − Q(i, j − 1) − Q(i − 1, j)
for all (i, j) ∈ [n] × [n].

Again, this correspondence Q ↔ A is a bijection: Qn
∼= ASMn as sets. Later, we

improve this to an isomorphism of posets.

Remark 2.9. On the one hand, the number of PMs of size n is n!. On the other
hand, the numbers of ASM’s are Robbins numbers :

An =
n−1∏
i=0

(3i + 1) !

(n + i) !
.

This sequence goes as 1, 2, 7, 42, 429, 7436, 218348, 10850216, . . . ; see Robbins’ article
[18] on the long history for discovery of this formula. Evidently, it is difficult to deal
with such a large number of matrices; we want to find a smaller number of “nice”
matrices to study general quasi-copulas. This desire leads us to another class of
matrices (and copulas) which we call meet-irreducible. It will be clear that this class
is appropriate when we investigate a certain partial order on Qn. Thus we have to
mention that order next.

Concordance and reverse Bruhat orders.

Definition 2.10. Let P,Q ∈ Qn. Define the (discrete) concordance order P ≤ Q if
P (i, j) ≤ Q(i, j) for all i, j ∈ Ln.

Note that for i = 0 or j = 0, the equality P (i, j) = Q(i, j) always holds because
both are 0. Hence we do not care about these entries.
Figure 2 illustrates this “entrywise” order for n = 3; from the bottom to top, entries
get larger and larger one by one, as we see.

Remark 2.11. Let |Q| denote a sum of all entries of Q ∈ Qn. By definition of <
above, if P �Q (a covering relation), then |Q|− |P | is a positive integer; here we are
not saying that |Q| − |P | is 1, though. This is indeed the case as shown in Theorem
3.24. In fact, Q is a graded poset (Appendix A).

We now come to the poset isomorphism as mentioned before. On the one hand,
the subset Pn (⊆ Qn) naturally has the induced suborder. On the other hand, Sn

has the reverse Bruhat order ≤′ (Appendix A).
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Figure 2. (Q3,≤)
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Theorem 2.12. The posets (Sn,≤′) and (Pn,≤) are isomorphic.

Proof. Let w ∈ Sn and consider the corresponding PM, say A(w) = (aij). On the PM
side, w(r, s) = |{i | i ≤ r and w(i) ≤ s}| counts the number of 1’s in the northwest
part of an (r, s)-entry (the border inclusive) of A(w). On the copula side, Q(r, s)
is the sum

∑
i≤r,j≤s aij. But this quantity coincides with w(r, s) because each aij is

either 0 or 1. Therefore, entrywise orders determined by {w(r, s)} and {Q(r, s)} are
same. ¤

In what follows, we use the two orders interchangeably.
Next we go into details of a poset structure of Qn; below Theorem 2.15 asserts

that Qn is a lattice. Here we need two lemmas:

Lemma 2.13. Let Q : Ln × Ln → L. Then the following are equivalent:

(1) Q ∈ Qn.
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(2) Q satisfies Q1 and moreover

Q(i, j) − Q(i − 1, j) ∈ {0, 1} and Q(i, j) − Q(i, j − 1) ∈ {0, 1}
for all i, j ∈ [n].

Proof. This is a consequence of [1, Proposition 2 and Remark 4] . ¤
Lemma 2.14. Let P,Q ∈ Qn. Define a matrix R by R(i, j) = min{P (i, j), Q(i, j)}.
Then R ∈ Qn and R = P ∧Q, that is, R is the meet of P and Q in the poset (Qn,≤).

Proof. We need to show that (a): R is indeed a quasi-copula and (b): R is the
maximum element of the set {S ∈ Qn | S ≤ P and S ≤ Q}.

(a): For convenience, we use Lemma 2.13 instead of verifying Definition 2.2. It
is easy to check Q1: R(i, 0) = min{P (i, 0), Q(i, 0)} = 0 (= R(0, i)) and R(i, n) =
min{P (i, n), Q(i, n)} = i (= R(n, i)). Next, fix i, j ∈ [n]. To show that R(i, j) −
R(i−1, j) ∈ {0, 1}, let α = P (i−1, j), β = P (i, j), γ = Q(i−1, j) and δ = Q(i, j) for
simplicity. Then β − α ∈ {0, 1} and δ − γ ∈ {0, 1} because P and Q satisfy Lemma
2.13 (2). (i) Suppose δ = β. Then R(i, j) − R(i − 1, j) = β − min{α, γ} ∈ {0, 1}.
(ii) Suppose δ − β ≥ 1. Then α ≤ β ≤ δ − 1 ≤ γ so that R(i, j) − R(i − 1, j) =
min{β, δ} − min{α, γ} = β − α ∈ {0, 1}. (iii) For the case β − δ ≥ 1, we can mimic
the proof above. Finally, we can show R(i, j)−R(i, j − 1) ∈ {0, 1} in the same way.

(b): Suppose S ≤ P and S ≤ Q. It follows that S(i, j) ≤ P (i, j) and S(i, j) ≤
Q(i, j) for all i, j. Hence S(i, j) ≤ min{P (i, j), Q(i, j)} for all i, j. In other words,
S ≤ R. ¤
Theorem 2.15. For n ≥ 1, Qn is a lattice. For n ≥ 3, Pn is not a lattice. For
n ≥ 4, Qn \ Pn is not a lattice.

Proof. We just proved that P ∧ Q exists and belongs to Qn. With the order-dual
argument, P ∨ Q also exists and belongs to Qn. As a result, Qn is a lattice. To
show that Pn is not a lattice for n ≥ 3, we first consider P,Q ∈ P3 corresponding
to v = 132 and w = 213. The matrix P ∧ Q is a proper quasi-copula (the middle
matrix in Figure 2). For n ≥ 4, consider the embedding of these permutations:
v′ = 13245 · · ·n and w′ = 21345 · · ·n. Then discuss v′ ∧w′ in Sn. It remains to show
that Qn \Pn is not a lattice for n ≥ 4. Here we claim that there exist P,Q ∈ Q4 \P4

such that P ∧ Q 6∈ Q4 \ P4. Let A =


0 0 0 1
0 1 0 0
1 −1 1 0
0 1 0 0

 and B =


0 0 1 0
0 1 −1 1
0 0 1 0
1 0 0 0


be proper ASMs. They correspond to proper quasi-copulas P =


0 0 0 1
0 1 1 2
1 1 2 3
1 2 3 4

 and
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Q =


0 0 1 1
0 1 1 2
0 1 2 3
1 2 3 4

. Observe that P ∧ Q =


0 0 0 1
0 1 1 2
0 1 2 3
1 2 3 4

 which corresponds to

the PM


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

. For n ≥ 5, again, consider the natural embedding. ¤

Corollary 2.16. As the Dedekind-MacNeille completion of (Pn,≤) ∼= (Sn,≤′), we
obtain (Qn,≤) ∼= (ASMn,≤′).

In fact, Qn is a finite distributive lattice (Appendix A).

Remark 2.17. Nelsen and Úbeda-Flores [14] showed that the set of all non-discrete
quasi-copulas Q is the Dedekind-MacNeille completion of copulas C and moreover Q
is a lattice whereas neither C nor Q \ C is a lattice. Hence we may understand that
our theorem and corollary above is a discretization of their results.

Consequently, Qn has the minimum and maximum elements (denoted by Wn

and Mn), Fréchet-Hoeffding bounds : Wn(i, j) = max{i + j − n, 0} and Mn(i, j) =
min{i, j}. In fact, Mn and Wn are elements of Pn corresponding to the reverse and
identity permutations, respectively. Despite such simple definitions, these copulas
play a key role in the proof of Theorem 3.24.

3. Meet-irreducible discrete copulas

Meet-irreducibility. We now introduce our main idea, meet-irreducibility. Let us
introduce its definition in a rather general setting.

Definition 3.1. Let x, y, z be elements of a finite poset (P,≤). Define z to be meet-
irreducible in P if z is not the maximum element of P and whenever z = x ∧ y then
z = x or z = y. Denote by M(P ) the set of all meet-irreducible elements in P .

It follows that each non-maximal z ∈ P can be written as z = x1∧· · ·∧xk for some
anti-chain {x1, . . . , xk} in M(P ) (take all minimal elements of {x ∈ M(P ) | z ≤ x});
see Reading [17, Section 2] for details of the lattice theory. Thus, to know a poset
structure of P , it is essential to understand such elements.

Question 3.2. What are M(Pn) and M(Qn)?

Indeed M(Pn) = M(Qn); see Appendix A. In particular, every meet-irreducible
discrete irreducible quasi-copula is necessarily a copula.
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Remark 3.3. We see an obvious conflict of terms “meet-irreducible” and “irre-
ducible”. We will just say “meet-irreducible discrete copulas” whenever no confusion
arises.

Now we want to find a necessary and sufficient condition for Q = Q(A) ∈ Qn to
be meet-irreducible in terms of its entries. To describe the matrix correspondence
Q ↔ A more explicitly, let us introduce this definition.

Definition 3.4. A pair (i, j) is a positive position of Q if aij > 0 (i.e., aij = 1); (i, j)
is a negative position of Q if aij < 0 (i.e., aij = −1).

A positive position indicates validity of a strict inequality of the 2-increasing con-
dition for the square with (i−1, j−1), (i, j−1), (i−1, j) and (i, j)-entries. Similarly,
a negative position indicates a failure of the 2-increasing condition.

Example 3.5. Let Q =


0 0 0 1 1
0 0 1 1 2
0 1 1 2 3
1 1 2 3 4
1 2 3 4 5

 “ = ”


## × ## × ## × ##

. Here

# shows some positive and × some negative positions.

Proposition 3.6. Let Q ∈ Qn. Then Q ∈ M(Qn) if and only if its positive positions
are as below and it does not contain any negative positions.

#
. . . # #

. . . ##
. . . # #

. . . #


As a result, there do not exist meet-irreducible discrete proper quasi-copulas. A
more precise statement is: there exist integers i1, i2, i3, i4 and w ∈ Sn such that
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i1 + i2 + i3 + i4 = n, i1 ≥ 0, i2, i3 ≥ 1, i4 ≥ 0,

w(i) =


i if 1 ≤ i ≤ i1
i + i3 if i1 + 1 ≤ i ≤ i1 + i2

i − i2 if i1 + i2 + 1 ≤ i ≤ i1 + i2 + i3

i if i1 + i2 + i3 + 1 ≤ i ≤ n

and A(w) is the associated PM for Q (write this permutation as w = w(i1, i2, i3, i4)).

Remark 3.7. We can rephrase this more intuitively: let 1, 2, . . . , n be an increas-
ing sequence. Prepare four empty boxes as . Then put each number of
{1, 2, · · · , n} into these boxes keeping the total order, left to right. Our rule is
that we allow the first and fourth boxes to be empty while the second and third
ones cannot be empty. Then interchange the second and third boxes together with
numbers. Resulting sequences are precisely one-line expressions of meet-irreducible
permutations. Examples of M(S8) are

1 34567 2 8 , 1 5678 234 , 45 123 678 and 678 12345 .

In this way, it is easy to construct meet-irreducible permutations and hence meet-
irreducible copulas. We postpone the proof to the next subsection.

Observation 3.8. For each non-maximal Q ∈ Qn, there exist a unique anti-chain
of meet-irreducible copulas R1, . . . , Rk such that Q = R1 ∧ · · · ∧ Rk.

For example, let Q =


0 0 1 1
0 1 1 2
0 1 2 3
1 2 3 4

. Then

Q =


0 1 1 1
0 1 2 2
0 1 2 3
1 2 3 4

 ∧


0 0 1 1
1 1 2 2
1 2 3 3
1 2 3 4

 ∧


1 1 1 1
1 1 1 2
1 2 2 3
1 2 3 4



=


# # ##

 ∧


## # #

 ∧


# ## #

 .

Meet-irreducible matrices (MM). As an analogy of PM and ASM, it is natural
to introduce the following (see back Figure 1):

Definition 3.9. Let A be a meet-irreducible matrix (MM): it is a PM and the
associated pemutation is meet-irreducible.
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We now bring ideas from Coxeter group theory; there is a simple characterization
of meet-irreducible permutations. For w ∈ Sn, let DL(w) = {i ∈ [n − 1] | w−1(i) >
w−1(i + 1)} and DR(w) = DL(w−1). Call these sets left and right descents of w.

Fact 3.10. [17, Sections 7 and 8] The following are equivalent:

(1) w is meet-irreducible in (Sn,≤′).
(2) |DL(w)| = |DR(w)| = 1.

In particular, the identity permutation is not meet-irreducible.

Remark 3.11. Apart from Bruhat and reverse Bruaht orders, it is common to call
permutations satisfying Fact 3.10 (2) bigrassmannian in the Coxeter group context.

Proposition 3.12. Let w ∈ Sn. Then the following are equivalent:

(1) there exist integers (i1, i2, i3, i4) as stated in Proposition 3.6.
(2) |DL(w)| = |DR(w)| = 1.

Proof. (1) =⇒ (2): Check that DL(w) = {i1 + i3} and DR(w) = {i1 + i2}.
(2) =⇒ (1): Let k be the unique element of DR(w). Thus the image of w splits
into two increasing sequences: {w(1) < · · · < w(k)} and {w(k + 1) < · · · < w(n)}.
Keeping this in mind, let

I = {i | 1 ≤ i ≤ k − 1 and w(i + 1) − w(i) > 1},
J = {i | k + 2 ≤ i ≤ n and w(i) − w(i − 1) > 1}.

Some of these sets may be empty. We claim that |I|, |J | ≤ 1.
Proof of Claim. Suppose, toward a contradiction, |I| ≥ 2, say a, b ∈ I and a < b.
Then w(a + 1) − w(a) > 1 and w(b + 1) − w(b) > 1. Since w(1) < · · · < w(k),
we must have w−1(w(a + 1) − 1) 6∈ [k] and w−1(w(b + 1) − 1) 6∈ [k]. Therefore
w(a+1)− 1, w(b+1)− 1 ∈ DL(w) with w(a+1)− 1 6= w(b+1)− 1, a contradiction.
Similarly, suppose |J | ≥ 2, say c, d ∈ J and c < d. Then w(c) − w(c − 1) > 1 and
w(d)−w(d−1) > 1. Since w(k+1) < · · · < w(n), we must have w−1(w(c−1)+1) ∈ [k]
and w−1(w(d− 1) + 1) ∈ [k]. Therefore w(c− 1), w(d− 1) ∈ DL(w), with w(c− 1) 6=
w(d − 1), a contradiction. ¥
Now we determine i1, i2, i3 and i4. If I = ∅, then i1 := 0; otherwise, say I = {a},
let i1 := a. Similaly, if J = ∅, then i4 := 0; otherwise, say J = {c}, let i4 := n − c.
Finally, set i2 := k− i1 and i3 := n− i1 − i2 − i4 (in any case). By construction, each
of sequences {w(1) < · · · < w(i1)}, {w(i1 + 1) < · · · < w(i1 + i2)}, {w(i1 + i2 + 1) <
· · · < w(i1 + i2 + i3)} and {w(i1 + i2 + i3 +1) < · · · < w(n)} is increasing one by one,
as required. ¤
Proof of Proposition 3.6. Suppose Q ∈ M(Qn), say Q = Q(w) and w ∈ M(Sn).
Then positive positions of Q are positions of 1’s in A(w) as explained above. Since
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Q ∈ M(Qn) = M(Pn) ⊆ Pn, there is no −1 entry in A(Q) so that Q does not contain
any negative positions. The converse is clear. ¤
Commutativity and associativity. Here we record some consequences of the last
subsection (although we do not need them for Theorem 3.24) for subsequent research.
Define Q ∈ Qn to be commutative if Q(i, j) = Q(j, i) for all i, j. Define Q ∈ Qn to
be associative if Q(i, Q(j, k)) = Q(Q(i, j), k) for all i, j, k. It is easy to characterize
these algebraic properties for meet-irreducible copulas:

Observation 3.13. Let Q ∈ M(Qn), say Q = Q(w) with w = w(i1, i2, i3, i4) ∈
M(Sn). Then Q(w) is commutative ⇐⇒ A(w) is symmetric ⇐⇒ i2 = i3.

Next, before giving a characterization of associativity for meet-irreducible copulas,
we need some definitions.

Definition 3.14. The Lukasiewicz matrix of size n is the PM A = (aij) with aij = 1
whenever i + j = n + 1.

Of course, this matrix corresponds to Wn (Fréchet-Hoeffding lower bound) as well
as the reverse permutation.

Fact 3.15. [12, Proposition 9] A discrete copula is associative if and only if its
associated PM is an ordinal sum of Lukasiewicz matrices.

Define Q ∈ Pn to be Coxeter if the associated permutation is a Coxeter generator;
these are precisely coatoms of Pn and Qn.

Proposition 3.16. Let Q ∈ M(Qn). Then Q is associative ⇐⇒ Q is Coxeter.

Proof. Let A(w) ∈ M(Sn) be the associated PM for Q. Suppose Q is associative.
Then A = A1 ⊕ · · · ⊕ Ak, with each Ai Lukasiewicz matrix. If the size of some Ai

is greater than 2, then w has more than one right descent, a contradiction since w
is meet-irreducible. If all of size of Ai are 1, then w is the identity permutation, a
contradiction again. Hence {Ai} contains a size 2 matrix, say Aj, 1 ≤ j ≤ n − 1.
Moreover, such j must be unique for the same reason. It follows that A must be of
the form 

1
. . .

1
1

1
1

. . .
1


.
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Thus w is the transposition interchanging j and j + 1, a Coxeter generator. The
converse is clear.

¤

Kendall’s τ . In the course of studying (non-discrete) copulas, Kendall’s τ plays a
fundamental role. It takes real values in [−1, 1] satisfying many inequalities with
other statistics; see Chapter 5 of Nelsen’s book [13] for details. Here we consider
some similar statistic for meet-irreducible copulas in our discrete setting; we will
show that statistic is “almost positive” for meet-irreducibles.
Say (i, j) is an inversion of w if i < j and w(i) > w(j). Let `(w) be the number of
inversions of w.

Definition 3.17.

τ(Q(w)) = 1 − 2`(w)
n(n−1)

2

.

For a real number α, let bαc denote the least integer which does not exceed α.

Lemma 3.18.

max{`(w) | w ∈ M(Sn)} = bn2/4c.

Proof. Observe that `(w(i1, i2, i3, i4)) = i2i3. Hence it is enough to find the maximum
for i2i3 under the condition i2 ≥ 1, i3 ≥ 1 and i1 + i2 + i3 + i4 = n. Equivalently, find
maximal area of rectangles with integer width i2 and height i3 summing up to n. Thus
w(0, b(n+1)/2c, bn/2c, 0) gives the maximum i2i3 = b(n+1)/2cbn/2c = bn2/4c. ¤
Proposition 3.19. If Q ∈ M(Qn) (n ≥ 2), then

− 1

n − 1
≤ τ(Q) ≤ 1.

Proof. The second inequality is clear. We verify the first one. Say Q = Q(w), w ∈
M(Sn). Thanks to Lemma 3.18, we have

τ(Q) = 1 − 2`(w)
n(n−1)

2

≥ 1 − 2(n2/4)
n(n−1)

2

= − 1

n − 1
.

¤

Rank function. Another important statistic for non-discrete copulas is Spearman’s
ρ. As discussed in Nelsen’s book [13, Chapter 5], τ and ρ are certain integral of
copulas.

Question 3.20. As an analogy, what if we take a sum of values of Q ∈ Qn in our
discrete setting?
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Let |Q| =
∑

i,j Q(i, j) denote the sum of all entries of the matrix Q ∈ Qn; we

can still ignore zero-th row and column. Then | | : Qn → R is a strictly increasing
function.

Proposition 3.21. |Mn| = n(n+1)(2n+1)
6

.

Proof. Recall that Mn(i, j) = min{i, j}. Write down its entries as
1 1 1 · · · 1
1 2 2 · · · 2

1 2
...

...
... n − 1 n − 1

1 2 · · · n − 1 n


so that |Mn| = 1 (2n − 1) + 2 (2n − 3) + · · · + (n − 1) 3 + n 1 = n(n+1)(2n+1)

6
. ¤

Definition 3.22. m(Q) = |Mn| − |Q|.

Lemma 3.23. m(Wn) = (n−1)n(n+1)
6

= |M(Qn)| and m(Mn) = 0.

Proof. Recall that Wn(i, j) = max{i + j − n, 0}. Write down its entries as
1

1 2

1
...

...

1 · · · ... n − 1
1 2 · · · n − 1 n

 .

Above the anti-diagonal, all blank positions are 0. Thus

|Wn| = 1 n + 2 (n − 1) + · · · + (n − 1) 2 + n 1 =
n(n + 1)(n + 2)

6
.

Consequently, m(Wn) = n(n+1)(2n+1)
6

− n(n+1)(n+2)
6

= (n−1)n(n+1)
6

. Finally, m(Mn) = 0
is immediate. ¤

The following theorem now reveals the relation between entries of discrete quasi-
copulas and the (graded) lattice structure.

Theorem 3.24. m(Q) = |{R ∈ M(Qn) | Q ≤ R}|.

Proof. The function m : Qn → R is strictly decreasing by definition of the concor-
dance order. In particular, if P � Q (a covering relation) then m(P ) − m(Q) is
not only positive but also an integer (hence at least one). With Lemma 3.23, we
know that m(Wn) = |M(Qn)| and m(Mn) = 0. Since Qn is a graded poset of rank



16 MASATO KOBAYASHI

|M(Qn)|, every maximal chain (from Wn up to Mn) has the length exactly |M(Qn)|.
Hence for each covering relation P �Q, a positive integer m(P ) − m(Q) must be 1.
This shows that m coincides with the function mQn for the distributive lattice Qn

(Appendix A). ¤

Example 3.25. Let Q = Q(231) =

 0 1 1
0 1 2
1 2 3

. Then m(Q) =

∣∣∣∣∣∣
1 1 1
1 2 2
1 2 3

∣∣∣∣∣∣ −∣∣∣∣∣∣
0 1 1
0 1 2
1 2 3

∣∣∣∣∣∣ = 3.

Remark 3.26. If Q is a copula, say Q = Q(w) and w ∈ Sn, then m(Q(w)) is equal
to

β(w) :=
∑
i<j

w(i)>w(j)

(w(i) − w(j)).

See [8, Theorem]. In the example above, β(231) = (2 − 1) + (3 − 1) = 3. This is a
useful formula to compute m(Q).

4. Conclusion

We have studied discrete copulas from a lattice-theoretic point of view as a con-
tinuation of recent work on matrix representations [1, 9, 12, 14]. The main idea was
to introduce a new class of copulas, meet-irreducible copulas. Then we showed its
characterization in terms of matrix entries. This method clarified lattice structures
of ASMs as well as discrete quasi-couplas. We also observed some consequences from
algebraic and enumerative aspects such as commutativity and Kendall’s τ . In this
way, discrete copulas have rich mathematical structures.

We end with some ideas for our future research.

• Observtation 3.8 guarantees (theoretically) the existence of a decomposition
of a given quasi-copula into the meet of meet-irreducible ones. How can we
find such a decomposition?

• It should be possible to develop similar ideas for copulas for non-square matri-
ces as studied in [2]. For example, it makes sense to speak of the concordance
order for such matrices. Study this order in details.
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Figure 3. Dedekind-MacNeille completion
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Appendix A. Poset and Coxeter group

In this appendix, we recall some definitions and provide useful facts. Reading [17]
contains most of these.

Poset. Let (P,≤) be a finite poset and x, y ∈ P . Say y covers x (write x�y) if x < y
and {z ∈ P | x < z < y} = ∅. Say X = {x1, . . . , xn} ⊆ P is a chain if whenever
xi 6= xj, then xi < xj or xi > xj; it is an antichain if whenever xi 6= xj, then xi 6< xj

and xi 6> xj. A chain X is maximal if whenever y ∈ P \ X, then X ∪ {y} is no
longer a chain. A poset P is graded if P has the maximum and minimum elements
and moreover, every maximal chain has the same length. The rank of such P is the
length of a (any) maximal chain. Say two posets (P,≤) and (P ′,≤′) are isomorphic
(P ∼= P ′) if there is a bijection f : P → P ′ such that x ≤ y ⇐⇒ f(x) ≤′ f(y).

Lattice. Let P be as above (so that we deal only with finite posets). Given x, y ∈ P ,
consider {z ∈ P | z ≤ x and z ≤ y}. If there exists a unique maximal element of this
set, then we call it the meet of x and y in P (denoted by x ∧ y). We define the join
x∨y order-dually. Say P is a lattice if x∧y and x∨y exist for all x, y ∈ P . A subset
X ⊆ P is meet-dense if whenever x ∈ P , then there exists Y ⊆ X such that x = ∧Y .
Say z is meet-irreducible in P if z is not the maximum element of P and whenever
z = x ∧ y then z = x or z = y. Denote by M(P ) the set of all meet-irreducible
elements in P . A lattice P is distributive if x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, z. The Dedekind-MacNeille completion of
P is the smallest lattice containing P . Consequently, if P ∼= P ′ as posets, then their
Dedekind-MacNeille completions are isomorphic.

Example A.1. Figure 3 illustrates an example of the Dedekind-MacNeille comple-
tion. The poset on left is the original poset, and the one on right is its completion
so that the meet and join all exist. Black dots  indicate meet-irreducible elements.
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Fact A.2. Every finite distributive lattice P is a graded poset. Moreover, the func-
tion mP (x) = |{z ∈ M(P ) | x ≤ z}| satisfies x � y =⇒ mP (x) − mP (y) = 1; this
is the order dual of [3, Proposition 2.10]. In particular, the rank of P is equal to
|M(P )|.

Coxeter group. By Sn we mean the symmetric group on [n] := {1, 2, . . . , n}. To
represent permutations, we often use one-line notation: “w = i1 · · · in with ik ∈ [n]”
means w(k) = ik. For instance, w = 231 means w(1) = 2, w(2) = 3 and w(3) = 1.
The reverse permutation is i 7→ n − i + 1.

For each i ∈ [n − 1], let si denote the transposition interchanging i and i + 1. We
call S = {si | i ∈ [n − 1]} Coxeter generators of Sn. These elements satisfy Coxeter
relations :

s2
i = e,

sisi+1si = si+1sisi+1,

sisj = sjsi for |i − j| ≥ 2.

Moreover, S is indeed a group-theoretic generator of Sn. That is, for each w ∈ Sn,
there exist si1 , . . . , sik such that w = si1 · · · sik . Let `(w) = min{k ≥ 0 | w =
si1 · · · sik} be the Coxeter length. Say (i, j) is an inversion of w if i < j and w(i) >
w(j).

Fact A.3. `(w) is equal to the number of inversions of w.

Bruhat order. For w ∈ Sn and (i, j) ∈ [n]2, let w(i, j) = |{k | k ≤ i and w(k) ≤
j}|. Define Bruhat order v ≤ w if v(i, j) ≥ w(i, j) for all i, j. This gives a graded
poset structure (Sn,≤, `) of rank n(n−1)/2. Also, define reverse Bruhat order v ≤′ w
if v(i, j) ≤ w(i, j) for all i, j.

Fact A.4. |M(Sn)| = (n − 1)n(n + 1)/6.

Fact A.5. Let x ∈ Sn. Then β(x) :=
∑

i<j
x(i)>x(j)

x(i) − x(j) is equal to the number

of meet-irreducible permutations z such that x ≤′ z in reverse Bruhat order [8,
Theorem].

Fact A.6. The Dedekind-MacNeille completion of Sn is isomorphic to ASMn. More-
over, ASMn is a finite distributive lattice and M(Sn) = M(ASMn).

Hence we can unambiguously extend the function β onto ASMn which coincides
with m = mASMn .

Fact A.7. For all x ∈ Sn, we have

0 ≤ `(x) ≤ n(n − 1)

2
and 0 ≤ β(x) ≤ (n − 1)n(n + 1)

6
.
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This is equivalent to

−1 ≤ 1 − 2`(x)
n(n−1)

2

≤ 1 and − 1 ≤ 1 − 2β(x)
(n−1)n(n+1)

6

≤ 1

as Kendall’s τ and Spearman’s ρ for sample distributions without ties.
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[1] I. Aguiló, J. Suner, and J. Torrens, Matrix representation of discrete quasi-copulas, Fuzzy Sets
and Systems 159 (2008), no. 13, 1658–1672.

[2] , Matrix representation of copulas and quasi-copulas defined on non-square grids of the
unit square, Fuzzy Sets and Systems 161 (2010), no. 2, 254–268.

[3] M. Aigner, Combinatorial theory, Fundamental Principles of Mathematical Sciences, vol. 234,
Springer-Verlag, Berlin-New York, 1979.

[4] C. Alsina, R. Nelsen, and B. Schweizer, On the characterization of a class of binary operations
on distribution functions, Statist. Probab. Lett. 17 (1993), no. 2, 85–89.

[5] H. Daniels, Rank correlation and population models, J. Roy. Statist. Soc. Ser. B. 12 (1950),
171–181.

[6] J. Durbin and A. Stuart, Inversions and rank correlation coefficients., J. Roy. Statist. Soc. Ser.
B. 13 (1951), 303–309.

[7] C. Genest, J. J. Quesada-Molina, J.A. Rod́ıguez-Lallena, and C. Sempi, A characterization of
quasi-copulas, J. Multivariate Anal. 69 (1999), no. 2, 193–205.

[8] M. Kobayashi, Enumeration of bigrassmannian permutations below a permutation in Bruhat
order, Order 28 (2011), no. 1, 131–137.

[9] A. Kolesarova, R. Mesiar, J. Mordelova, and C. Sempi, Discrete copulas, IEEE Trans. on Fuzzy
Systems 14 (2006), no. 5, 698–705.

[10] W. Kruskal, Ordinal measures of association, J. Amer. Statist. Assoc. 53 (1958), 814–861.
[11] E. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137–1153.
[12] G. Mayor, J. Suner, and J. Torrens, Copula-like operations on finite settings, IEEE Trans. on

Fuzzy Systems 13 (2005), no. 4, 468–477.
[13] R. Nelsen, An introduction to copulas, Springer Series in Statistics. Springer, New York, 2006.
[14] R. Nelsen and M. Úbeda Flores, The lattice-theoretic structure of sets of bivariate copulas and

quasi-copulas, C. R. Math. Acad. Sci. Paris 341 (2005), no. 9, 583–586.
[15] T. Okamoto and M. Yanagimoto, Partial orderings of permutations and monotonicity of a rank

correlation statistic, Ann. Inst. Statist. Math. 21 (1969), 489–506.
[16] J. J. Quesada-Molina and C. Sempi, Discrete quasi-copulas, Insurance Math. Econom. 37

(2005), no. 1, 27–41.
[17] N. Reading, Order dimension, strong Bruhat order and lattice propeties for posets, Order 19

(2002), no. 1, 73–100.
[18] D. Robbins, The story of 1,2,7,42,429,7436,. . . , Math. Intelligencer 13 (1991), no. 2, 12–19.
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