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ENUMERATION OF BIGRASSMANNIAN PERMUTATIONS
BELOW A PERMUTATION IN BRUHAT ORDER

MASATO KOBAYASHI

ABSTRACT. In theory of Coxeter groups, bigrassmannian elements are well
known as elements which have precisely one left descent and precisely one right
descent. In this article, we prove formulas on enumeration of bigrassmannian
permutations weakly below a permutation in Bruhat order in the symmetric
groups. For the proof, we use equivalent characterizations of bigrassmannian
permutations by Lascoux-Schiitzenberger and Reading.

1. INTRODUCTION

In the theory of Coxeter groups, bigrassmannian elements are known as ele-
ments which have precisely one left descent and precisely one right descent. They
play a significant role to investigate structure of the Bruhat order [3]. In partic-
ular, in the symmetric group (type A), bigrassmannian permutations have many
nice order-theoretic properties. First, Lascoux-Schiitzenberger proved [4] that a
permutation is bigrassmannian if and only if it is join-irreducible. For definition
of join-irreduciblity, see [5], Sections 2]. Second, Reading [5] characterized join-
irreducible permutations as certain minimal monotone triangles.

In this article, we will make use of these characterizations to answer the following
question: given a permutation x, how can we find the number of bigrassmannian
permutations weakly below it in Bruhat order? Unfortunately, this is not easy
from the usual definition of Bruhat order. Instead, it is much easier to use mono-
tone triangles because the set of monotone triangles has a partial order which is
equivalent to Bruhat order over the symmetric groups. Moreover, there is a nat-
ural identification of join-irreducible (equivalently, bigrassmannian) permutations
with entries of monotone triangles. We will see detail of these in Section 2. In
Section 3, we prove the main result:
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Theorem. Forx € S, let I(x) be the set of inversions of x and f(x) the number
of bigrassmannian permutations weakly below x in the Bruhat order. Then we have

Ba) = Y (@) ~ ) — @) = L S ala) 0l = 3 (i) - 2(s)).
a=1 a=1 (4,3)€l(z)

2. TWO CHARACTERIZATIONS OF BIGRASSMANNIAN PERMUTATIONS
We begin with definition of the Bruhat order.

Definition 2.1. Let x € S,,. A pair of integers (i, 7) is said to be an inversion
of xif 1 <i < j<mnandax(i) > x(j). Let I(z) denote the set of all inversions.
Define the length ¢(z) to be #I(x). Let t;; denote a transposition (i < j). In
particular, write s; = t;,41. It is well-known that S = {s1,...,s,_1} generates
Sy, and £(z) is equal to the minimum number k£ such that x = s;s;,...s;, (the
identity permutation e has length 0 with the empty word). A reduction of x is a
permutation of the form xt;; with (¢,j) € I(z). Define the Bruhat order on 5,
as w < y if there exist xg, x1,...,2x € S, such that o = w,xpy = y and x; is a
reduction of x;,; for all 0 < <k — 1.

Definition 2.2. For x € §,,, define left and right descents to be
Dp(z)={s; € S|z (i) >2"'(i + 1)},
Dr(x)={s; € S| x(i) > z(1 +1)}.
We say that x is bigrassmannian if #Dp(z) = #Dg(z) = 1. Define
B(z) = {w | w < z and w is bigrassmannian},
plx) = #B(x).

We would like to know B(z) and B(x) for a given z. As mentioned earlier, this is
not easy from the definition of Bruhat order. However, the following two equivalent
characterizations of bigrassmannian permutations by Lascoux-Schiitzenberger and
Reading are helpful.

Characterization 1. [4, Théoreme 4.4] x € S,, is bigrassmannian if and only if it
is join-irreducible (Lascoux and Schiitzenberger used terminology the bases rather
than the set of join-irreducible elements).

Before Reading’s characterization, let us see the definition of monotone triangles.

Definition 2.3. A monotone triangle x of order n is an n(n—1)/2-tuple (x4 |1 <
b<a<n-—1)such that 1 < x4 <N, Tap < Taps1, Tab > Tay1p ANd Tap < Tag1p11
for all a,b. Regard a permutation z € S, as a monotone triangle of order n
as follows: for each 1 < a < n — 1, let x,1, %40, ..., T4 be integers such that
{z(1),2(2),...,2(a)} = {®a1,%a2, -, Taa}s Tap < Tap+1 for all 1 < b < a — 1.
Then = = (z4) is a monotone triangle. Denote by L(S,) the set of all monotone
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triangles of order n. Define a partial order on L(S,,) by = < y if 24 < yg for all
a,b.

Following [B, Section 8], we introduce an important family of monotone triangles.

Definition 2.4. For positive integers (a,b,c) such that 1 < b < a <n—1 and
b+1<c¢<n-—a+b, define J,. to be the componentwise smallest monotone
triangle such that a, b entry is > ¢ (notice that Reading worked on S,, 1 (= Coxeter
group of type A,) while here we are working on S,,). In other words, J,. satisfies
x > Jupe if and only if x4, > ¢ for x € L(S,,).

Characterization 2. [5, Section 8] x € S,, is join-irreducible if and only if there
exist some (a,b,c) with1 <b<a<n-—1andb+1<c<n-—a+b such that
T = Jape-

As a consequence of minimality of J. in Definition 2.4] it is easy to compare
join-irreducible monotone triangles at the same position (a, b) as

Jape < Jgpg = ¢ < d

for all ¢,d with b+ 1 < ¢,d <n —a+b. Hence we may identify entries appearing
in (24) with “(Jape,,)”. This identification is quite useful to find B(x) (because of
Characterizations 1 and 2) as we shall see in Proposition 271

Remark 2.5. In fact, L(S5,) is a distributive lattice and the MacNeille completion
of S, (meaning smallest lattice which contains S,). In particular, for all z,y € S,,,
x < y in Bruhat order (Definition 2.1]) is equivalent to = < y as monotone triangles
(Definition [2.3]). Since join-irreducible elements are invariant under the MacNeille
completion, even for z € L(S,), 5(x) makes sense as the number of join-irreducible
monotone triangles weakly below x. For detail, see [1, 2], [4, Théoreme 4.4] and
[5, Sections 6, 7, 8].

Definition 2.6. For = € L(S,,), define

n—1 a

Y(x) = Z Z Tap-

a=1 b=1
Proposition 2.7.

(1) Foreacha,b such that1 <b < a <n—1, there is a chain of bigrassmannian
permutaitons:

Jappr1 < Japprz < 0 < Japn—atb-
Consequently for x € L(S,),

Ja,b,b-i—la Ja,b,b+27 SRR Jabl‘abJ S B(l‘)

(.

~
:Babfb

(2) Let x € L(S,). Then f(x) = 3(x) — X(e).
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Proof.

(1) Use Jype < Japg <= ¢ < d.
(2) Note that ey, = b for all a,b. It then follows from (1) that

Blx) ={w € S, | w <z and w is bigrassmannian}

n—1 a

:ZZ#{Jabc|b+1§C§xab}

3. PROOF OF THEOREM

We saw the formula of 5(x) for general monotone triangles z. If x is a permuta-
tion, there are simpler formulas of 3(x) because x(a) appears n —a times in entries
of the monotone triangle for each a so that it is easier to compute ¥(x).

Theorem. For all x € S, we have

Next we check the second equality. Since

n

Zx(a) = Za and Zx(a)2 = Zaz,

a=1
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we have
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Before the proof the last equality, we need a lemma.
Lemma. Let x € S, and i < j. Then we have
Blx) — Blaty) = (5 — i) (x(i) — 2(7)).
In particular, B(x) — B(zs;) = x(i) —x(i + 1).

Proof. Let w = xt;;. Note that w(i) = z(j), w(j) = x(¢) and w(a) = z(a) for all
a # i,j. Then apply the first equality as just shown to w and x:

n—1 n—1

B(x) - Blw) = 3 (2(a) — )(n — a) = 3 _(w(a) - a)(n — a)

Proof of the last equality. The proof is induction on ¢(x). If £(z) = 0, then x = e
and hence B(e) = 0. If /(x) > 0, we can choose some a such that (a,a+ 1) € I(x)
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(otherwise x = e since z(1) < z(2) < --- < x(n)). Let w = xs,. Note that
(a,a+1) ¢ I(w). Now set

1(w) = {(i,a) € I(w) |1 <i<a—1},
L(w) = {(i,a+1) € I(w) |1 <i<a-—1},
I(w) = {(a,j) € I(w) [ a+2 < j < n},
Li(w) = {(a+1,j) € I(w) [a+2 < j <n},
I5(w) = {(i,5) € I(w) | i,j & {a.a + 1}}.

Clearly I(w) = UI,(w) and the union is disjoint. Observe that (i,a) € [;(w) <=
(i,a + 1) € Iy(x) since w(a) < w(i) <= z(a+1) < z(i) for 1 <i < a—1.
Therefore

Yo (i) —w@)= Y (2(i) —z(a+ 1),

(3, a)elr (w) (3, a+1)elz2(x)

It is quite similar to show that

(1,a+1) € L(w) < (i,a) € I;(x),

(a,5) € Ii(w) <= (a+ 1,5) € Li(x),
(a+1,j) € I4(w) < (a,j) € I3(z),

(,5) € Is(w) <= (i, j) € Is(x).

Since ¢(w) = £(x) — 1, the hypothesis of induction tells us that

(i,4) €I (w)
Then thanks to the Lemma, we conclude that

B(z) = B(w) + (z(a) — x(a + 1))
= Y (w(i) = w(h)) + (z(a) —2(a+1))

(4, 5) €l (w)

(1)) + (z(a) —2z(a + 1))

i11()
=D (@

(i, 5)€l(z)
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Example. Let x = 42513. Then

=13,

I

™
— = =

I

™
O~ = W
O NN
— N

S((2(1) = 1% + (2(2) = 2)* + (2(3) = 3)* + (z(4) — 4)* + (2(5) — 5)?) = 13,
1 — 2)3+ (2(3) — 3)2 + (x(4) — 4)1 = 13,

Y (@) —a(f) = (1) = 2(2) + (1) — 2(4) + (1) - 2(5) + 2(2) — 2(4)
(i, 5)€l(z)
+2(3) —2(4) + 2(3) — z(5) = 13.
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