INTEGRAL REPRESENTATIONS FOR LOCAL DILOGARITHM
AND TRILOGARITHM FUNCTIONS

MASATO KOBAYASHI

ABSTRACT. We show new integral representations for dilogarithm and triloga-
rithm functions on the unit interval. As a consequence, we also prove (1) new
integral representations for Apéry, Catalan constants and Legendre x functions
of order 2, 3, (2) a lower bound for the dilogarithm function on the unit interval,
(3) new Euler sums.
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F1GURE 1. Summary of Boo Rim Choe, Ewell and Williams-Yue’s work
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1. INTRODUCTION

1.1. Polylogarithm function. The polylogarithm function

X _n 2 3

Lis(z) = Z—:z+z——|—z—+---, s,z€ C,lz| <1
L 25 " 39

plays a significant role in many areas of number theory; its origin, the dilogarithm
Lis(2), dates back to Abel, Euler, Kummer, Landen and Spence etc. See Kirillov
[7], Lewin [8], Zagier [13] for more details. The main theme of this article is
to better understand the relation between the dilogarithm, trilogarithm Liz(z)
functions and zeta values ((2), ((3) (Apéry constant), ((4) in terms of new integral
representations.

1.2. Main results. First, we wish to briefly explain work of Boo Rim Choe (1987)
2], Ewell (1990) [5] and Williams-Yue (1993) [11, p.1582-1583] which motivated
us. Their common idea is that, from Maclaurin series involving sin™! z, they each
derived certain infinite sums related to ((2) and {(3) with termwise Wallis integral.
Figure 1 gives summary of this.

In this article, we reformulate their ideas introducing Wallis operator and nat-
urally extend their results.

e We find new integral representations for Liy(t), Liz(t), Legendre x functions
of order 2, 3 and even for Apéry, Catalan constants (Theorems 2.8, 3.4,
Corollaries 2.9, 3.5).

e We give a lower bound for Lis(¢) on the unit interval (Theorem 4.1).

e Making use of (sin™* 2)? and (sin~! x)*, we prove new Euler sums (Theorem
44).
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1.3. Notation. Throughout n denotes a nonnegative integer. Let

2n)!l =2n(2n —2)---4- 2,
2n—-1)N'=2n-1)2n—-3)---3-1.

In particular, we understand that (—1)!! = 0!l = 1. Moreover, let

— 1\
v, — (n 1)
n!!

_1

Notice the relation wa,weni1 = 5,5

as we will see in the sequel.

Remark 1.1.

[1] The sequence {w,} appears in Wallis integral as

w/2 s
) Zw, n even
/ sin"zdr =< 2" ’
0 w, n odd.

[2] Tt also appears in the literature in the disguise of central binomial coeffi-

clents as
(2n — D! 1 /2n
Wap = ~— = = 5= :
(2n)! 22n \ n

See Apéry [1], van der Poorten [10], for example.

1 1

Unless otherwise specified, ¢, u, x,y are real numbers. By sin™" x and cos™ z,
we mean the real inverse sine and cosine functions (arcsin z, arccos x), that is,

1 - ™
y=sinr <= z=siny, —5 <

IN

i
2

y=cos tx <= xz=cosy, 0<y

IN <

.

Fact 1.2 (Gradshteyn-Ryzhik [6, p.60, 61]).

L o0 t2n+1
1 '—t:§ —, |t <1
(1) St n:0w2 g1 M
e 1 ¢
2 in~t4)?2 == -t <1
(2) (i o) =53 s i<

Further, sinh™' z = log(z + v/22 + 1) (z € R) denotes the inverse hyperbolic
sine function (some authors write arsinh z, arcsinh « or argsinh = for this one).
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2. DILOGARITHM FUNCTION
2.1. Definition.
Definition 2.1. For 0 <t < 1, the dilogarithm function is

X n
Lis(t) = —.
n=1
In particular, Liy(1) = ((2) = %
It is possible to describe its even part by Li2 itself since

>

Its odd part is called the Legendre X functlon of order 2:

t2n
L1 (t%).

0 t?n—l
X2(t) = 21 @n—12

Here is a fundamental relation of these two parts.
Observation 2.2.

Lis(t) = xa(t) + iLiz(ﬁ).

Definition 2.3. Define

[e.e]

Tiat) = 3 —((2;11”;)2152“1

as a signed analog of xa(t).

This is also called the inverse tangent integral of order 2 because of the integral

representations
t -1
tan™ " x
Ti(t) = / dz.
0

T

2.2. Wallis operator. Let R][[t]] denote the set of power series in ¢ over real
coefficients. Set

F(t)={f e RJ[t]| f(t) is convergent for [t] < 1}.
Definition 2.4. For f € F(t), define W : F(t) — F(t) by

! du
= tu) —.
| 2
Call W the Wallis operator.

Remark 2.5. [6, p.17] Power series may be integrated and differentiated termwise
inside the circle of convergence without changing the radius of convergence. In the
sequel, we will frequently use this without mentioning explicitly.
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It is now helpful to understand W coefficientwise.
Lemma 2.6. Let f(t) => " a,t" € F(t). Then

00 . 00
Wf(t) = Z Ao, <§w2n) t2n + Z a2n+1w2n+1t2n+1.

n=0 n=0
Proof.

du
— 752ann 4 Ao, 2f2n—|-1 2n—+1
/0 (; > s

n=0

n=0
- du
t2n + Ao t 2n+1 2n+1
Z m Z 2l 0 Vi—u?

T
2n n+1
aop (§w2n)t + g A1 Wapn 1 627
n=0

I
ME& I

3
Il
o

Observe that W is linear in the sense that W(f + g) = W(f) + W(g) and
Wi(cf)=cW(f) for f,g € F(t),c € R.

2.3. Main theorem 1.

Lemma 2.7. All of the following are convergent power series for |¢| < 1.

» £+l
3 t= n——
(3) sin ng 1
) 1 1y i 1 t2”
(sin = —
n=1 w2n

0 7f2n—i-1
6 h='t= -1 " .
(6) St ;( V' wmy
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Proof. We already saw (3) and (4) in Introduction. (5) is (3) 4+ 2(4). (6) and (7)
follow from (3), (4) and sinh™" 2z = 1 sin~'(iz) (for all z € C) [6, p.56]. O

Theorem 2.8. For 0 <t < 1, all of the following hold.

Usin ™! (tu)
8 t) = ——du.
( ) X2() 0 m u
1 1 [ (sin™!(tu))?
“Lin(t?) = = AN StV 75
) M) W/O ice
Ugin=L(¢ 1 (gin=1(tu))2
(10) Lis(t) = / () + g G ()",
0 vV 1-— U2
Usinh ™ (tu)
11 Tis(t) = ——du.
1 b= ) e
T (1 ., , | /1§(smh1tu)
-z — —Lis(tY | = — " du.
(12) 5 (4L12(t ) g Lia( )) e u
Proof. Note that these are equivalent to the following statements:
(13) W (sin™'¢) = xa(t).
T W S
(14) W ( 5 (sin™"¢t) ) =3 4L12<t ).
1 1 . —1.4\2 .
(15) W (sm t+ ;(sm t) ) = Liy(t).
(16) W (sinh™' ¢) = Tiy(t).
1, .. _ ™ (1_. 1.
(17) w (5(s1nh lt)2> o) <ZL12(t2) - §L12(t4)) :

With Lemmas 2.6 and 2.7, we can verify (13)-(16) by checking coefficients of those
series. For example,

t2n+1 t2n+1

W (sin™! (Z Wang - n 1) Z WonWan+15 T

t2n+1

— Z m = xa(?).
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It remains to show (17).

(e ) - 0 )

Corollary 2.9.

(18) 01 j%du _ %g(z) _ %2

1) % 01 %<Slln—\/—71uu2)2 EC(Q) - 72T_421

(20) Alem*u+%@m1u))7%%?:g@y—§,
(21) 01 i}rih—_% du=G.

(22) fi%¥%%wﬁ%®:£

Proof. These are x2(1), $Liz(1?), Lis(1), Tip(1) and F (3Lix(1%) — £Lis(1%)).

3. TRILOGARITHM FUNCTION
3.1. Definition.
Definition 3.1. The trilogarithm function for 0 <t <1 is

. — 1"
ng(t) = Z E
n=1

Its odd part is the Legendre x function of order 3:

o0

xs3(t) = Z

t2n—1
2n—19
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In particular, Liz(1) = ¢(3) and x5(1) = Z¢(3).

Observation 3.2. .
Lis(t) = xs(t) + gLi:a(tZ)‘

Further, a signed analog of x3(t) is

Ti
iy(t ; 2n—1
3.2. Main theorem 2.
Lemma 3.3.
tsinfly e t2n+l
23 dy = Woyp———.
(23) | =y > v i
t(sin~ty)? .1 ¢
24 22 7 dy = — .
(24 /0 Yy i szn (2n)3

2n

tsin™ty + L(sin~ty)? t2ntl =2
25 T dy = n—————
o [EEEE =S Y

tsinh~ty > t2ntl
2 dy = 1" —_—
(26) |ty D
tl(sinhfly)Q o (_1)n—1 £2n
27 /2—d = ,
(27) : ; y ; o P

Proof. We can derive all of these by integrating (3)-(7) termwise.
As a consequence, we obtain the equalities below (cf. (13)-(17)).

28) w ([ 2 a) =t
(29) W (/Ot %@%_13/)2 dy) - g : éLig(t2).
(30) W ( /0 Fin Ty + i(sm_l v)* dy) — Li(t).

Y

(31) W (/Ot sinh "y dy) = Tis(t).
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o w{[E) S )

_7700 (_1)7#1 2n

_§; @ny "

T~ 1 o0 o Lo,

:§<; 2n)’ 2;(471)3 )
1

In this way, the five functions above come to possess double integral represen-
tations. For example,

1 fu gin ™! Y du
t) = d )
x3(t) /0 ( /O ; y) T

We can indeed simplify such integrals to single ones by exchanging order of inte-
grals.

Theorem 3.4.
1 .. -1 1
(33) x3(t) :/ sin™" (tx) cos o
0 x
1 9 1 l(sinfl(tx))Q cos—1 ¢
—Li t2 —_ — 2 d .
(34) SLig(t?) = = /O 2 ’
(35) Lis(t) = /1 (sin (1) + 2~ (1)) cosx
0 T
Usinh ™ (tz) cos! x
(36) Tiy (1) = / : .
0

T (1 . I N L(sinh ™" (tz))? cos ™' &

Proof. We give a proof altogether. For t = 0, all the equalities hold as 0 = 0.
Suppose 0 < t < 1. Let

1 1 1
fly) e {sin_1 Y, %(Sin_1 y)?,sin~ty + %(sin_1 y)?, sinh 'y, §(sinh_1 y)2} .
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([ 1) [ 2
:///t%ﬁdudy
/ Iy ,1yd
/f s'wdz.

Then

]
Corollary 3.5.
Ysin™'2zcos 'z 7
38 dxr = =((3).
(33) | e
2 ' i(sin'z)icosT 1
Z dr = = .
(39) - ) v = £C3)
(40) /1 (sin™'z + L(sin™' 2)?) cos™ T 3
0 T
1 .- hfl —1 3
(41) / sinh™" x cos xdx _
0 x 32
L(sinh ' z)2cos™ ! 3
42 : dr = —((3).
(12) A g v =200s)

Proof. These are x3(1), £Li3(12), Lis(1), Tis(1) and Z (3Lis(1?) — 55Liz(1*)). O

4. APPLICATIONS

o

nel 2 and

4.1. Inequalities. It is easy to see from the definitions Lis(t) = >
Xo(t) =S, £ (0 < ¢ < 1) that

n=1 (2n—1)2
2
g
In fact, we can improve these inequalities a little more. For upper bounds, it is
immediate that

(0.)

<>

— n?

0 < Liy(t) < and 0 < x(t) <

o3,

ng(

||M8
3|°5
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o0 _ o0
tQTL 1 t 7T2

=L e S LT §

We next prove nontrivial lower bounds for these functions and also Tiy(¢).

Theorem 4.1. For 0 <t <1,

_ 4 (sin™'t)?

(43) Liz(t) = 3. 1
(sin~t¢)?
(44) Xz(t) > 2—t
, (sinh™*¢)?

(45) Tis(t) > -

11

Before the proof, we need a lemma. It provides another integral representation

of Liy(t) which seems interesting itself.

Lemma 4.2. For 0 <t <1,

(46) Liy(t 8\/—/ sin™!(v/tz) cos™ o
V1—tx?
1o -1,
(cf. Lig(t) = §/ (sin™"(v/tx))? cos dx, t s Vi in (34)‘)
T Jo x
Proof. If t = 0, then both sides are 0. For 0 <t <1,
Y -1 Y
RHS = —/ ———=cos ~ —=d
T Jo /1—1y>? Vi Y

dudy

_/ J%/:JV%M
// \/1— 1—u2du

I;W</ 5%?%@>

o ()

(5205 (9)) -
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Proof of Theorem 4.1. If t = 0, then all of (43)-(45) hold as 0 > 0. Suppose ¢ > 0.
Since sin~! is increasing on [0, 1], sin™*(tz) < sin™*(v/tz) for all 0 < ¢,z < 1. Then

8\/_ Lgin™! \/_x .
Lio(t T dx
V1 —tx?
. ﬁ lw g

i Cos

8t [t1 /1 ’
=— | 3 <§(sin1 tx)2> cos ' xdw
T Jo

1

1
1, 4, . -1
— —(sin” " tzr) ———=dx
0 /0 2( )\/1—x2

3 | oo

1
{ §(sin’1 tr)? cos ™ x]

[SER=R

4 /1 (sin™!tz)
> — dx
T Jo V1 —1t222

4 1 . }
= — | —(sin" " tx)
m | 3t 0
4 (sinT't)?
3Tt
Next, we prove (44). Note that

sin ™! (tx) < sin~! (tx)
it = Jieo

for 0 < t,z < 1. Integrate these from 0 to 1 in x so that

L sin™!(tx) Lsin~!(tx)
————drx < | —=du,
0 \/1—t2$2 0 \/1—56‘2

! (ta))? }

] <,

0

s —14\2
sin” "t
% < xa(t).

Quite similarly, for 0 < ¢,z < 1, it also holds that
sinh ™ (tx) < sinh ™! (tx)
VI+222 = J1—2a2
Usinh ™! (tz) gy < ! sinh™ ( )
———~dx
o V1+t222  — Jo V1-—2?

= Tiy(%).
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The left hand side is

sinh ™ (tz)? ' _ (sinh™'¢)?
2t 0 2t

4.2. Euler sums.

Definition 4.3. A harmonic number is H, = >, _, % More generally, for m,n >
1, an (m,n)-harmonic number is

"1
Hm™ =Y"

) = H,. Any series involving such numbers is called an Fuler

In particular, H
sum.
Valean [9, p.292-293] presents truly remarkable Euler sums such as

—

f By 1o - co).

f) Be T 6) - 223).

> 2 — 6001~ C2)6) - S0,
3 B _ (2)00m) + <65

There are many ideas to prove such formulas; J.M. Borwein and Bradley [4] gives
thirty two proofs for

S gy sy CU e

n=1

by integrals, polylogarithm functions, Fourier series and hypergeometric functions
etc. Here, as an application of our main idea, Wallis operators, we prove two new
Euler sums. Let

o) = Hz(i)—1 -

n



14 MASATO KOBAYASHI

Theorem 4.4.
> 0@ ™ 15
47 — = = Z2((4).
(47) ;(2n+1)2 384 64C()
> g® o3
48 nml T = T(4).
(48) ; 3 190 4€( )

For the proof, we make use of less-known Maclaurin series for (sin™'¢)% and
(sin~'¢)*; thus we can interpret this result as a natural subsequence of Boo, Ewell
and Williams-Yue’s work.

Lemma 4.5.

e t2n+1
o—14\3 (2)
(49) (sin™"t)° = 2 (GOn ) wgn—zn 1
1 — 1 ¢
50 n~l )t = = <3H(2) ) —
(50) a0 = 5 32 (30%) -

Proof. First, write (sin™'¢)? = >>7 J A,t?*"*! A, € R and let a, = 210”—;“114” (n >
0). It is enough to show that a, = 60. Since the series (sin~' ¢)3 = (t+%+- )3

starts from the 3 term, Ay = ay = 0. For convenience, set

fn<x> =

Sin2n+l T
(2n+ 1)1
Then

sin®" ¢

o) = "

cos,

fi(z) = ﬁ (2n sin®*~! (1 — sin® ) — sin®"! ) = fu1(z) — (2n + 1)?f, ().

Now let z = sin™'t (-2 <z < %), b, = (2n — 1)!l. Recall that

o t2n+1
t=> waps—
Z O 1

In terms of x, b,, fn(a:) this is

e 2n+1 e sq2n+1 e

n—l sin x 9
r= 3w G =3 R enIg s = > )
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Thus,

oo 00 2n+1 e
. X
Ig = Z An SlIlQn—i_1 Z Ay <w2n_2n 1 ) Z aan fn( )
n=0

n=0 n=0

Differentiate both sides twice in x:
6x = Z anb? f(z)
n=0
= Zanbi(fn—l(x) - (2n + 1)2fn(x))
n=0

= Z(anﬂbi-i-lfn(x) — anby (2n 4 1)* f(2)),
n=0
6 b} ful@) Ej%ﬂmﬂn ) = apb(2n + 1)° fu(2)).
n=0
Equating coefficients of f,,(z) yields
62 = an1b2, 1 — aybi(2n+1)%, n > 0.
Since b, 11 = (2n + 1)b, and b, # 0, we must have

6
ap41 — Ap = m
With ay = 0, we now arrive at
n—1
=2 G - o0

k::O Qk +1

as required.

The proof for (50) proceeds along the same line. Write (sin™"'¢)* = 15>/ C,.t*",
C, € R and let ¢, = C,wy,n* (n > 1). It is enough to show that ¢, = 3H7(12_)1.
Since the series (sin~'#)* starts from the t* term, C; = ¢; = 0. For convenience,
set

s 2n
sin“" x
90(0) = T
Then
s 2n—1
;o\ sinfT
gn(x) - (2n . 1>‘ cos T,
1
gn(z) = ((2n — 1) sin®* 2 z(1 — sin® z) — sin® z) = g,_1(z)—(2n)’gn(x).

(2n —1)!
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Now let z =sin™'t (-2 <z < %), d, = 2"(n — 1)!. Recall that

o0

I

Ie= 1 sin?z 1ga (2n)!! (2n) ‘sm x
2
T — wy N 2 nz; (2n — 1D n? Z nn ()

_ _ch <Lsm :13) _ %icndign(aﬁ)-

Differentiate both sides twice in x:

1 o
120% = 2} eadngy ()

1
= 33 (g1 (2) — (202 (2)
n=1
== Z andann Z cnd? (2n)% g, ()
_ 1 S d2 1 S d2 2 _
=5 2 i)~ 5 3 aden’n) (@ =0
1 (o)
= 5 2t~ i) on(o),
Zdngn = Z(cnﬂdiﬂ—cndi<2n>2>gn<x>.
n=1
Equating coeﬂi(nents of g,(x) yields
12 1
?di = §(Cn+1di+1 cady(2n)?), n > 1.
Since d,, 11 = 2nd,, and d,, # 0, we must have

With ¢; = 0, we conclude that
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Proof of Theorem 4.4. Note that

W Lo 1,.8) _ - 57(12)“’% 2n+1
é(sm 1)) = Z T 1 Wop i1t

n=1
o A (2)

=> _ O’
“—~ (2n+1)*

Clearly, t = 1 gives the sum for (47). Therefore,

Lo 13 oy duw Ty T
W(G(sm t)> —/0 6(sm u) Nie=ri 24(sm u) st

t=1
Similarly, we have

o rr(2)
2 co—14\4 ™ § :Hn—l 2n
%% <§(sm t) ) = 5 7t

so that

W (g(sin_l t)4)

We conclude that

1 1 5
B 2, 4 4 du 2, ., s 07
_/0 5(sin ) Vi-u? {15(3111 u) o 240

t=1

A2
n2 1 \240/ 120°

n=1
U
Remark 4.6. (47) is a variation of De Doelder’s formula >~ On’(l? = g—; (3, p.1196
(13)] and (48) gives another proof of > 7 I{fﬁj) = 1¢(4) [9, p.286] because
> g? X (H?Y 1 3 7
SIS (B k) - Sew - Few
n=1 n=1

4.3. Integral evaluation. As byproduct of our discussions, we find evaluation of
many integrals with known special values of Liy(t), Liz(t). Here, we record several

examples. Let ¢ = %5 be the golden ratio. Observe that

W5 —1 . 3—-+5
1 2 __

We write log” x for (logz)?. Note that
log*(¢™") = (log(¢™"))* = (~log(¢))* = (log(¢))* = log*(¢9).
Fact 4.7 ([8]).

7T2

(51) Liz(¢™") = —log*(¢) + 10
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2

o 7T
(52) Lio(6%) = ~log?(6) + =
4 272 2
Liz(¢72) = =¢(3) — =—1 ~log® ¢.
(53 i0(67%) = £C(3) ~ S log o+ - log ¢
1 2 1
4 Lip (= ) = — — =1log®?2
(54) i (2) g
(1 7 2 1
(55) Liz <§> = §C(3) — Elog2+ élog?’ 2.
Corollary 4.8.
Vsin™' (¢ 1u) 3 w2
56 ———du=—"log’ —.
(56) | e oo+ 5
(57) 1M _r W_Q_llo 29
o VI—u? s\12 2% )"
(58) E/1l(sm 1¢_1x)2cos 1xd:zc—Z—lC(i%)—Q—?TZlo ¢+ = log® ¢
T ), 2 5 15 8?38

(34) for t = ¢~ with (53) gives (58).
1

W (5(sinh™" t)Q)‘t:wl/? = g (}LLiz(QS_l) - §L12(¢_2)) = g

Finally, (34) for t = 1/v/2 with (55) gives (60).
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5. CONCLUDING REMARKS

We end with several remarks for our future research.
[1] For 0 < v < 1, define a generalized Wallis operator

- [ 1 7

so that we can deal with more general 1ntegrals. Study W,, particularly
for = 1/2,v/2/2,4/3/2.
[2] Can we show any inequality for Lis(¢), x3(¢) and Tiz(¢) in a similar way?
[3] Discuss (sinh™'¢)3, (sinh™' #)* and related Euler sums.
[4] Wolfram alpha [12] says that

1 /.. —1 3 /2 3
(sin™" ) / T 9
——dr = tuduy = — log2 —
/ . x i u® cot udu = g log 167r§( ),

sin~! ) /2 1
/ —dr = / ut cotu du = D) (—1872¢(3) + 93¢ (5) + 27* log 2)
0 0

! (sin~ x)3 /23 1 1 3
d d 19272 3) @) [
/0 o2 /0 sing 128(97TG Ul ) T T) )

U (sin™! z)* LERTE 93 7i
/ (\/ﬁ dr = = du = G — 24inLiy(—i) + 7((5) - @w”
where 1) denotes the third derivative of the digamma function . It
should be possible to describe such integrals as certain infinite sums with
or without numbers w,,. We plan to study those details in subsequent
publication.
[5] It is interesting that (38) happens to be quite similar to

/1 tan_lxcot_lxdx _ gg(?)).
0

X

Not often this result appears in this form in the literature, though. Now,
let us see how we evaluate this integral. Let

1 -1 -1
tan " xcot™ x
_[ = / dl’,
0 x

1 —1 1 -1 2
t t
]1:/ an-oT ]2:/ (tan™"2)* , -
0 x 0 X

1 -1 -1
tan "z cot™ x
I = / dz
0

T

Ttan™'z (T — tan™!
:/ n :z:(2 n x)dajzzfl—fg.
0 x 2

Then
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We can compute I; and I as follows.

11 1 %
tan~!' x (=™
L = dr = E ——z*"d
! /0 x v /0 — 2n+1$ *

D [ o (D)
=St =Y =6

n=0 n=0

For I, recall from Fourier analysis that

= 1
log<tang>:—222n+1cos(2n+1)y, O<y<m.

n=0

It follows that

1 1.2 T2 2
t 1
I, = / —< an_ ) dr ——= —/ y dy
0 X y=2tan"lzx 0 sy
1 w/2 /2
=7 ([yQ log <tan %) }0 — /0 2y log <tan %) dy)
1 (™2 =1
= —= -2 2 1 d
2/0 y( 22n+1cos(n+ )y) y

— 1
222n+1/0 ycos(2n + 1)y dy
. 7'r/2 71'/2‘
sin(2n + 1)y sin(2n + 1)y
({y( >] -] ( >dy>
0

2n + 1 2n +1

0

What if we replace tan~!' by tanh™'?
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