ゼータ関数 1: ゼータ正の偶数値 〜三角関数の奥へ〜

連続講義第2回 小林雅人

神奈川大学&一橋大学

2020年11月2日

目次

今日の話

ゼータ関数の入門。

特に、ゼータ関数の正の偶数値の詳細

キーワード

- バーゼル問題
- ゼータ関数
- $\zeta(2), \zeta(4)$
- 三角関数
- ゼータ正の偶数値

バーゼル問題 (オイラー 1735)

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{6}$$

注目すべきは、いきなり π が登場すること。なぜか?

計算法:正弦関数 $\sin x$ を用いる。 そこで、 $\sin x$ に関する2つの事実を確認しておく。

 $\sin x$ には無限和の表示

$$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \cdots$$

が存在。

 $\sin x$ には無限乗積分解

$$\sin x = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2} \right)$$

が存在。

バーゼル問題の解決:無限積

$$\sin x = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2} \right) = x \left(1 - \frac{x^2}{1^2 \pi^2} \right) \left(1 - \frac{x^2}{2^2 \pi^2} \right) \left(1 - \frac{x^2}{3^2 \pi^2} \right) \cdots$$
とマクローリン級数

 $-\sum_{n=1}^{\infty} \frac{1}{n^2 \pi^2} = -\frac{1}{3!}$

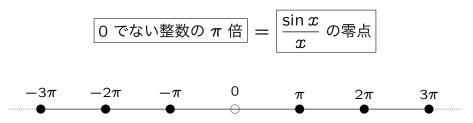
の x^3 の係数を比べて

 $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$

から
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$$

が導ける。■

この証明のポイント:次の関係性



この零点は $(m\pi, -m\pi)$ と $\frac{2}{2}$ つペアで現れる。これが平方数 の逆数和に π^2 が登場した本質的な理由である。

ゼータ関数

s > 2 を満たす自然数 s に対して、

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

$$\zeta(3) = \frac{1}{1^3} + \frac{1}{2^3} + \frac{1}{3^3} + \cdots$$

$$\zeta(4) = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \cdots$$

$$\zeta(5) = \frac{1}{1^5} + \frac{1}{2^5} + \frac{1}{3^5} + \cdots$$

ゼータ偶数値は次のようになる。

2 <i>s</i>	$\zeta(2s)$	2 <i>s</i>	$\zeta(2s)$
2	$\frac{\pi^2}{}$	12	$691\pi^{12}$
	6		638512875
4	$\frac{\pi^4}{}$	14	$2\pi^{14}$
	90		18243225
6	π^6	16	$3617\pi^{16}$
	945		325641566250
8	π^{8}	18	$43867\pi^{18}$
	9450		38979295480125
10	π^{10}	20	$174611\pi^{20}$
	93555		1531329465290625

 $\zeta(2s)$ は、1 にかなり近い。

$$\zeta(2)=rac{\pi^2}{6}=1.64493\cdots$$
,
$$\zeta(4)=rac{\pi^4}{90}=1.08232\cdots$$
,
$$\zeta(6)=rac{\pi^6}{945}=1.10734\cdots$$
,
$$\zeta(8)=rac{\pi^8}{9450}=1.004077\cdots$$
,
$$\zeta(10)=rac{\pi^{10}}{93555}=1.00099\cdots$$
実際、 $\{\zeta(2s)\}$ は $s o\infty$ で 1 に近づいていく。

10/1

バーゼル問題は、 $\zeta(2)=\frac{\pi^2}{6}$ を意味する。 では、ほかの値は?

$$\zeta(3) = ?$$

 $\zeta(4) = ?$
 $\zeta(5) = ?$

定理(これもオイラー)

$$\zeta(4) = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}.$$

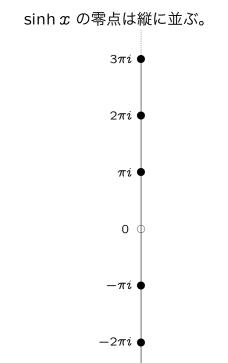
どうやって計算したらよい?

$$\rightarrow \zeta(4)$$
 は、 $\sin x$ **と** $\sinh x$ **を組み合わせる**と計算できる。

双曲正弦関数

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

 $\sin x$ の仲間。 $\sinh(ix) = i \sin x$ なので、 $\sin x$ を虚軸上で考えたものと思ってよい。



14 / 1

$\sin x$ と似た2つの事実を確認しておく。

マクローリン展開

$$\sinh x = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1}$$

無限乗積

$$\sinh x = x \prod_{n=1}^{\infty} \left(1 + \frac{x^2}{n^2 \pi^2} \right)$$

証明:

$$\sin x = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2}\right)$$
 と $\sinh x = x \prod_{n=1}^{\infty} \left(1 + \frac{x^2}{n^2 \pi^2}\right)$ の積をとり、 x^2 で割って関数

$$rac{\sin x \sinh x}{x^2} = \prod\limits_{n=1}^{\infty} \left(1 - rac{x^4}{n^4 \pi^4}
ight)$$
を考える。両辺の x^4 の係数を比較しよう。

(左辺) =
$$\left(\frac{1}{1!} - \frac{1}{3!}x^2 + \frac{1}{5!}x^4 - \cdots\right) \left(\frac{1}{1!} + \frac{1}{3!}x^2 + \frac{1}{5!}x^4 + \cdots\right)$$
なので、 x^4 の係数は $\frac{1}{1!5!} - \frac{1}{3!3!} + \frac{1}{5!1!} = -\frac{1}{90}$. 右辺のそ

れは $-\sum\limits_{n=1}^{\infty}rac{1}{n^4\pi^4}$ であるから、これらを等しいとすると

$$\sum_{n=1}^{\infty} n^4 \pi^4$$
 $\int_{-\infty}^{\infty} \frac{1}{n^4 \pi^4} \int_{-\infty}^{\infty} \frac{1}{n^4 \pi^$

 $-\frac{1}{90} = -\sum_{n=1}^{\infty} \frac{1}{n^4 \pi^4}$, つまり $\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.

では、 $\zeta(6)$, $\zeta(8)$, $\zeta(10)$, \cdots については? \rightarrow ベルヌーイ数 列で表現できる。

ベルヌーイ数列

数列 $\{B_n\}_{n>0}$ を漸化式

$$B_0 = 1$$
, $B_n = -rac{1}{n+1} \sum_{k=0}^{n-1} {}_{n+1} \mathsf{C}_k B_k$ $(n \ge 1)$

で定める。

$$B_3=B_5=B_7=\cdots=0$$

定理(オイラー)

$$\zeta(2n) = (-1)^{n+1} \frac{(2\pi)^{2n}}{2(2n)!} B_{2n}.$$

証明の概略: $\cot x-\frac{1}{x}$ の部分分数分解を用いる。この関数の極が $\pm m\pi$ (m は自然数)になることから出てくる。 $\cot x=\frac{\cos x}{\sin x}$ なので、 $\zeta(2n)$ は本質的にやはり $\sin x$ の奥底に組み込まれている。

(9 月の中川さんのコメントについて:多重ゼータもいろいろと三角関数の奥に眠っているようです)

書き換えてみると…

$$\zeta(2n) = \left((-1)^{n+1} B_{2n} \right) \cdot (2\pi)^{2n} \cdot \frac{1}{(2n)!} \cdot \frac{1}{2}$$

考察

- 2π のベキが $\zeta(-)$ の引数 2n に等しい。
- さらに、2n の階乗が登場する。
- 分母には 2 がポツンと登場する。

なぜか? もしきちんと答えることができたら、ゼータの核心に 近づける。

考察

• $\{\zeta(2n+1)\}$ にはいろいろな関係式が存在する(詳しくはまた来年)。

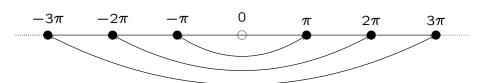
ただ、正確な値はわかっていない。

なぜ、 $\zeta(2n)$ と似たような手法で計算できないのだろう?

「偶数」に比べて「奇数」は格段に難しいからだ。 例えば、整数全体には

$$m \mapsto -m$$

と 2 回対称性が存在するが、3 以上の奇数回対称性は存在しない。



「周期関数」は、どうしても零点が直線上に離散的に並んでしまうので、2回対称性が生じてしまう。(直線を組み合わせても同じ)

単に三角関数を考えるだけでは、うまくいかない。ならば、

$$\frac{\sin x}{x} = \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2} \right)$$

$$rac{\sin x \sinh x}{x^2} = \prod\limits_{n=1}^{\infty} \left(1 - rac{x^4}{n^4 \pi^4}
ight)$$

の間をとって

$$\prod_{n=1}^{\infty} \left(1 - \frac{x^3}{n^3 \pi^3} \right)$$

のような無限積を考えてみたら? ちなみにラマヌジャンは

$$\prod_{n=1}^{\infty} \left(1 + \frac{x^6}{n^6 \pi^6} \right) = \frac{\sinh(x) \sinh(\omega x) \sinh(\omega^2 x)}{x^3}$$

を考察している。

今考えていること ベルヌーイ数を分解して分析

計算機の得意な人へ…

- ベルヌーイ数の(有理数としての)素因数分解を計算してみて欲しい。n=33 くらいまで
- $2(2^{2n}-1)B_{2n}$ は整数 (ラマヌジャン) なので、その素因数 分解も計算して欲しい。
- *B*_{2n} が2の何乗で割れるかを正確に知りたい。
- (2020/11/2 講演直後、中川幸一さんに計算して頂きました。)

まとめ

- バーゼル問題 $\zeta(2) = \frac{\pi^2}{6}$ は $\sin x$ を使って計算できた。
- $\zeta(4) = \frac{\pi^4}{90}$ は $\sin x$, $\sinh x$ を組み合わせて計算できた。
- $\zeta(2n)$ はベルヌーイ数を使って計算できる。これも本質的には $\sin x$ から来ている。一方で、 $\zeta(2n+1)$ は不明。

ありがとうございました。

コメントをどうぞ。