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ABSTRACT. We introduce a new directed graph structure into the set of alter-
nating sign matrices. This includes Bruhat graph (Bruhat order) of the sym-
metric groups as a subgraph (subposet).

Drake-Gerrish-Skandera (2004, 2006) gave characterizations of Bruhat order
in terms of total nonnegativity (TNN) and subtraction-free Laurent (SFL) ex-
pressions for permutation monomials. With our directed graph, we extend their
idea in two ways: first, from permutations to alternating sign matrices; second,
g-analogs (which we name ¢TNN and ¢SFL properties). As a by-product, we
obtain a new kind of permutation statistic, the signed bigrassmannian statistics,
using Dodgson’s condensation on determinants.
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1. INTRODUCTION

1.1. Bruhat order. Bruhat order has been of great importance in the combina-
torial matrix theory; there are many equivalent characterizations of this order. For
example, one is the transitive closure of the binary relation v — v on S,, to mean
v = ut for some transposition ¢ and ¢(u) < ¢(v) (with ¢ the number of inversions).
Other variations are:

e Entrywise order on Corner sum matrices; for example, see Brualdi-Deaett
[3] and Fortin [8].
e Lascoux-Schiitzenberger’s monotone triangles [13].
In addition to this list, Drake-Gerrish-Skandera [6, 7] found several new charac-
terizations of Bruhat order in terms of permutation monomials:
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F1GURE 1. ASMs and Related ideas

Total nonnegativity ‘

Corner sum Alternating sign matrices 1 -
matrix (Bruhat order, ASM graph) eterminants
bigrassmannian
permutations

Fact 1.1. Let u,v € S,,. Then the following are equivalent:

(1) u < v in Bruhat order.
(2) the polynomial fflu(l) s -$nu(n) — :Uh)(l) s -$m)(n) is TNN.
(3) the polynomial Z1,(1) - - * Tpum) — T10(1) * * * Tno(n) has (SFL) property.

Here TNN and SFL abbreviate “Totally NonNegative” and “Subtraction-Free
Laurent expression”, respectively; we give details of these terms later.

1.2. Main results. The aim of this article is simply to generalize Drake-Gerrish-
Skandera’s result above in two ways (Theorem 5.9); first, permutations to alter-
nating sign matrices (ASMs); second, we will establish a g-analog of their result.
We also observe some byproducts on permutation statistics (Theorems 5.1 and
5.14). For this purpose, we introduce a new directed graph structure to ASMs as
in the title; we call it ASM graph (Figure 1).

1.3. Outline. This articles consists of six sections. Section 2 serves preliminaries
on permutations and alternating sign matrices. Section 3 gives a precise definition
of ASM graph with notions of essential rectangles and bigrassmannian statistics;
in particular, Key Lemma 3.18 will play a role in the sequel. In Section 4, we
review Total nonnegativity and Subtraction-Free Laurent property. In Section 5,
we give proofs of main results. We end with the conclusion remark in Section 6.

To better understand the global picture of our discussion, it is helpful to keep
Figure 2 in mind.

1.4. Additional note. At the time of writing this article, the author found that
there are overlap with the recent article

R. Brualdi, M. Schroeder, Alternating sign matrices and their
Bruhat order, to appear in Discrete Math.
Brualdi and Schroeder discuss the sequential construction of an ASM from the unit
matrix (corresponding to our directed graph structure) as well as an enumerative
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F1GURE 2. Global picture of our discussion

Permutation matrices S, Alternating sign matrices A,
Bruhat order - ASM (Bruhat) order
Bruhat graph = ASM graph
grading:inversion number grading:bigrassmannian statistics
order isomorphic order isomorphic

Corner sum matrices S, Corner sum matrices A,
entrywise order entrywise order

N

property of B-rank function for ASMs (corresponding to bigrassmannian statistics
in our terminology).

acknowledgment.
The author would like to thank the editor as well as the anonymous referee for
helpful comments for improvement of the manuscript.

2. ALTERNATING SIGN MATRICES

For a positive integer n, let [n] denote the set {1,2,...,n}. Throughout this
article, we assume that n > 3 to avoid some triviality. By 5, we mean the
symmetric group on [n]. To represent permutations, we often use one-line notation:
“u = dy---4," with i, € [n] means u(k) = i,. For instance, u = 231 means
u(l) = 2,u(2) = 3 and u(3) = 1. Below, A = (a;;) and B = (b;;) are square
matrices of size n unless otherwise specified. For convenience, we write a;; as well
as A(i, j) for a matrix entry of A.

2.1. Alternating sign matrices. We begin with definitions of permutation ma-
trices and alternating sign matrices.

Definition 2.1. We say that A is a permutation matriz (PM) if there exists a
unique permutation u € S,, such that a;; = 1 if j = u(i) and a;; = 0 otherwise.

In this way, we often identify a permutation and a permutation matrix.
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FIGURE 3. (A3, <)
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Definition 2.2. We say that A is an alternating sign matriz (ASM) if for all
(i,7) € [n]?, we have

J

Qi S {_1a07 1}7 Zaik € {07 1}7

_ k=1
Zakj € {0,1} and Zaik = Zakj =1.
k=1 k=1 k=1

Denote by A, the set of all alternating sign matrices of size n.

Note that every PM is an ASM. Say an ASM is proper if it is not a PM; in other
words, an ASM is proper if and only if it has a —1 entry. Figure 3 shows seven
ASMs in Aj; the only one matrix in the middle is proper.

2.2. Corner sum matrices.
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FIGURE 4. (Aj, <)
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Definition 2.3. The corner sum matriz of A € A, is the n by n matrix A defined

by
Z(i7j): Z Cpq

p<%,q<j

for all 7, 7. Denote by A, the set of all such matrices.

Example 2.4.
0 1 0 N 1 11
ForA=|1 -1 1 |,wehave A= |1 1 2
0 1 0 1 2 3
Remark 2.5.

(1) Entries of each corner sum matrix are weakly increasing along rows and
columns: A(i,j) < A(k,l) if i <k and j <.
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(2) It is convenient to define a;; = 0 and A(i,j) = 0 whenever i or j is 0.
Then, we can recover each entry a;; from entries of A:

aij = A(i,5) + A — 1,5 — 1) — A(i,j — 1) — A(i — 1,5) for i,j > 1.

The correspondence A <> A between A, and .,Zlvn is in fact a bijection; see
Figures 3 and 4, for example.

The following criterion will be useful later.

Fact 2.6 (Robbins-Rumsey [15, p.172, Lemma 1]). Let X be a square matrix
of size n. Then X € A, if and only if X(i,n) = X(n,i) = ¢ for all ¢ and

3. BRUHAT GRAPH AND ASM GRAPH

In this section, we give a precise definition of ASM graph; this is a directed graph
structure of ASMs as in the title of this article. We first review the definition of
Bruhat graph on permutations; we will see that it is a certain subgraph of ASM
graph.

3.1. Bruhat graph. For natural numbers 1 < j < n, let ¢;; denote the transpo-
sition interchanging ¢ and j. Say a pair (7,j) is an inversion of a permutation
u € S, if i < jand u(i) > u(j). Let £(u) be the number of inversions of u. Write
u — v if v = ut;; and {(u) < ¢(v) (equivalently, (4, ) is an inversion of v). The
directed graph (S,,, —) is the Bruhat graph.

Example 3.1. We have the edge relation 1342 — 4312; in terms of permutation
matrices, we understand this relation as

1000 0001
0010 . 0010
0001 1 000
0100 0100

interchanging first and fourth columns (first and third rows).

Definition 3.2. Define Bruhat order v < v in S,, if there exists a directed path
from wu to v.

This is indeed a partial order on S,,. Here are more details:

Fact 3.3 (Chain Property). (S,, <) is a graded poset ranked by ¢. In other words,
if u < v, then there exists a directed path u = ug = w1 — s — --- — up = v
such that ¢(u;) — l(u;—1) = 1.

We wish to extend Bruhat order to ASMs (recall that every PM is an ASM).
However, we have to take care of the following two points:
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e Transposing columns or rows of an ASM does not necessarily produce an
ASM. Thus, we need to modify a definition of the edge relation.

e Find a rank function on ASMs, instead of the inversion number, such that
it is monotonically increasing along those directed edges.

We solve these problems with a new definition of a directed edge relation using
corner sum matrices and bigrassmannian statistics.

3.2. ASM order. Make sure that there is an equivalent characterization of Bruhat
order in terms of corner sum matrices (rather than entries of PMs):

Fact 3.4. The following are equivalent:

(1) w < v in Bruhat order in S,,.
(2) (3, ) > B(i, j) for all i, j € [n].

This idea naturally extends to ASMs:

Definition 3.5. Define ASM order A < B in A, if A(i,j) > B(i,j) for all
i,j € [n].

By abuse of language, we also call this “Bruhat order”. Hence (A,, <) is now a
poset.

Remark 3.6. Indeed, (A, <) is a finite distributive lattice as the MacNeille com-
pletion of Bruhat order (the smallest lattice which contains (S, <) as a subposet).
See Reading [14] for some more details.

3.3. Essential rectangles. As before, let A be an ASM. Consider integers ¢, j, k, [ €
[n] such that ¢ < j and k < [. Let

kl 2 . .
Rt ={(pg) e’ |i<p<jandk<q<lI}

be rectangular positions in a matrix (here, i < p and k < ¢ are weak inequalities
while p < 7 and ¢ < [ are strict).

Definition 3.7. We say that R is an essential rectangle for A if

A(p,/{) :A(pak_l)’ A<p7l) :A<p7l_1)+17

A(%Q) :A(i_laq)a and Av(]aQ):A(j_LQ)—i_l

for all (p,q) € Rff Similarly, say Rfjl is a dual essential rectangle for A if

A(p, k) = A(p, k — 1) + 17 A(p> ) A(pal - 1)7

I
A(i,q) =A(i—1,¢)+1, and A(j,q) = A(j —1,q)

€ Rf; . We call such conditions (dual) essential conditions. Denote by

for all (p, q)
(A)) the set of such (dual) rectangles for A.

E(A) (B
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Recall that adjacent entries of any corner sum matrix differs only by 0 or 1. These
conditions above describe “boundary conditions” on these rectangular positions.
Note: we understand A(p,q) = 0 if p or ¢ is 0; we often omit these zero entries
when we write a corner sum matrix.

Example 3.8. On the one hand, the permutation 4312 has an essential rectangle
R}3 since

4312 =

— oo
o oo
w W=
ANGYJCR Ny

On the other hand, the permutation 1342 has a dual essential rectangle R{3 since

1342 =

e
O N
w o o |
NG IO N

As we see, underlined positions indicate such rectangles.

Proposition 3.9. Let u € S, and i < 5. Then the following are equivalent:

(1) (i,7) is an inversion of .
(2) Rzgj)’u(l) is an essential rectangle for u.

Proof. 1f (7, 7) is an inversion of u, then there exist two 1s at (4, u(i)) and (7, u(j))
positions in the permutation matrix u. It follows from the definition of a corner sum
matrix that R?j(] ) gatisfies the essential conditions described above. Conversely,

if R?j(j "“() is an essential rectangle for u, then it is necessarily that u(j) <wu(i). O

Definition 3.10. For ¢ < j and k < [, let ﬁf}l be the n by n matrix such that
its (p, q)-entry is 1 if (p,q) € Rfj or 0 otherwise. Define a rectangular operator
?fjl ‘A, — A,

A+ REif RY € B(A),
mi(A) =< A—REif RE € E*(A),
A otherwise.

So this operator changes entries of a consecutive submatrix of entries of a corner
sum matrix.
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Example 3.11.

0001 1110
L, 001 2 1110
1342 = 713(4312) = 11231710000

1 2 3 4 0000
B2 Rl

Similarly, define an operator Tfjl : A, = A, with rfjl(A) being the ASM whose
corner sum matrix is 7 (A).

Remark 3.12.
(1) Let us be careful: whenever R} € E(A), is the resulting matrix A + R/
an element of A,? Yes. Indeed, adjacent entries of A+ éfjl differ only by

0 or 1 (sharing the n-th row and column entries of A). Fact 2.6 guarantees
that A + R} is a corner sum matrix for some (unique) ASM.
(2) Observe that 7}/ is an involution, i.e., (r}])?A = A.

With this idea, it is natural to introduce the following statistic for ASMs as (the
negative of ) a sum of entries of corner sum matrices.

Definition 3.13. For 4,7, let i A j = min{s, j}. For A € A,, define the bigrass-

mannian statistic
n

BA) =D (A5 =D Ali,j).
ij=1 ij=1

Here the constant > i A j comes for normalization so that (e) = 0 where e is
the unit of S,, so that €(i,j) =i A j.

Observe the following dichotomy: for each Rj] € E(A)U E*(A), we have either
ﬁ(rfle) < P(A) —= Rfjl € E(A) or B(rfle) > B(A) <~ Rfjl € E*(A). With
notions of essential rectangles and this statistic, we are now ready to introduce
ASM graph as a generalization of Bruhat graph.

Definition 3.14. Define an edge relation A 25 B in A, if B = ri(A) and B(A) <
ij
B(B). By A — B we mean A ﬁ> B for some i, j,k,[. Call the directed graph
ij
(A, —) ASM graph.

It naturally induces the same directed graph structure on .Zn; by abuse of lan-
guage, we call it ASM graph as well.
As shown above, every edge in Bruhat graph is also an edge in ASM graph; see
Figure 5. In terms of this new graph, we may characterize ASM order as follows:

Proposition 3.15. The following are equivalent:
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FIGURE 5. (A3, —)
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/
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(1) A< B in ASM order.
(2) There exists a directed path from A to B.

3.4. Key Lemma. We defined the edge relation for two ASMs in terms of their
corner sum matrices. Along this relation, what happens back to entries of the two
ASMs? Key Lemma 3.18 below answers this question completely; it will play a
key role to prove main results in Section 5. Before that, we take auxiliary two
steps with the following lemmas.

Lemma 3.16 (nonpositivity). Let B € A,. Suppose R} € E(B) is given. Then,
bz‘k S 0 and bjl S 0.

Proof. Suppose R} € E(B). Thanks to one of the essential conditions B(i, k) =

B(i,k — 1), we have

by = B(i, k)+B(i—1,k—1)—B(i,k—1)—B(i—1,k) = B(i—1,k—1)—B(i—1,k) < 0.
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FIGURE 6. (As, —)

0 01

01 2

1 2 3
0 1
0 2
1 3
1 1
1 2
1 3

Moreover, two of essential conditions B(j,1—1) = B(j—1,l—1)+1and B(j—1,1) =

B(j — 1,1 —1) + 1 imply that

by =B(j,))+B(j —1,1=1) = B(j,l = 1) = B(j — 1,])
= B(j,)-B(j—1,1—1)—2<0.
O

Lemma 3.17 (nonnegativity). Let B € A,. Suppose R} € E(B) is giwen. Then,
bil Z 0 and bjk Z 0.

Proof. Thanks to one of essential conditions B(i,1) = B(i,l — 1) + 1, we have
by = B(i,1)+B(i—1,1—1)—B(i,1—1)—B(i—1,1) = B(i—1,1—1)—B(i—1,1)+1 > 0.
It is similar to show that bj, > 0. O

These two lemmas assert that each of b, by, bji, bj; can take two values. In total,
there are 16 cases as listed in Table 1.
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TABLE 1. 16 kinds of edge relations A — B in ASM graph

13

bir  bi Qi Qg bir  bi Qi Aj
type type
bir by ajr g bjr by Ajk - g
01 1 0 -1 1 00
1 9
1 0 01 1 0 01
0 0 1 —1 -1 0 0 —1
2 10
1 0 0 1 1 0 0 1
01 1 0 -1 1 0 O
3 11
0 0 -1 1 0 0 -1 1
0 0 1 -1 -1 0 0 -1
4 12
0 0 -1 1 0 O -1 1
0 1 1 0 -1 1 00
5 13
1 -1 00 1 -1 00
0 O 1 -1 -1 0 0 —1
6 14
1 -1 0 0 1 -1 0 0
0 1 1 0 -1 1 0 O
7 15
0 —1 -1 0 0o -1 -1 0
0 0 1 -1 -1 0 0 -1
8 16
0 -1 -1 0 0 -1 -1 0

Key Lemma 3.18. Let B € A, and R;} € E(B). Consider a square matriz A of

size n. Then, the following are equivalent:

1) A% B.
ij
(2) The entries (ak, @i, ajk, a;) satisfy

@ik @i\ _ b ba ) _
Ajk - Qi bjr bji
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as listed in Table 1. Moreover, if (p,q) & {(i,k), (i,1), (4,k), (j, 1)}, then
(pg = bpg-
Proof. (1) => (2): Suppose A = B + éfjl so that A(p,q) = B(p,q) if and only if
(p,q) € Ry]. Thus, equalities

) —A(i —1,k) — A(i,k — 1) and
)—B(i—1,k)— B(i,k —1)

a = A(i, k) + A@i — 1,k — 1
by = B(i, k) + B(i — 1,k —
show that ag— by = A(i, k)— B(i, k) = 1 (the other six terms are gone). Similarly,

ag =A@, )+ Ali—1,1—1)— A>i —1,1) — A(i,l — 1) and
by = B(i,) + B(i — 1,1 — 1) — B(i — 1,1) — B(i,] — 1)
show that a; —b; = —Av(i,l—l)+§(i,l—1) = —1. In the same way, a,; —bjr = —1.
Likewise,
aj=A(G, ) +A(j—1,1—1)— A(j —1,1) — A(j,l — 1) and
bj=DB(j.1)+ B~ 11-1) = B(j —1L1) - B(j,l - 1)

show that aj; —b;; = A(j—1,1—1)— B(j — 1,1l —1) = 1. For other (p, ¢), observe
that [{(p,q),(p — 1,4 —1),(p—1,q), (p,q — 1)} N R| is either 0, 2 or 4. If it is 0
or 4, then clearly a,, = by, follows. If it is 2, then either p € {i,j} or ¢ € {k,[}.
Here suppose p =i and ¢q & {k, [} so that

(g — bpg = Alp, @) — B(p,q) — (A(p.q — 1) = B(p,q—1)) =1 - 1=0.

It is analogous to verify other cases.
(2) = (1): We can reverse most of the proof above. O

Table 1 indicates such 16 edge relations; note that only the type 1 occurs in
Bruhat graphs. It is convenient to say that a 2 by 2 minor in an ASM is inter-
changeable if it is one of the 32 patterns in the table.

0 1 0 00

0 0 1 00
Example 3.19. Let B=] 1 —1 0 0 1 | bean ASM of size 5. Its corner
0O 1 -1 10
0O 0 1 00
01 1 11
01 2 2 2
sum matrixis | 1 1 2 2 3 [. Here the underlined part refers to R3:. Then,
12 2 3 4
1 2 3 45
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we have
0O 1 0 0 0 0 1 0 0 0
0O 0 1 0 0 0 0 1 0 0
A= 1 -1 0 0 1 | — 1 -1 0 0 1 |=B8B
0O 1 0 0 O 0 1 -1 10
0O 0 O 1 0 0O 0 1 0 o0

This is type 9.

3.5. Essential points. As seen in the previous example, an essential rectangle
can be of size 1.

Definition 3.20. We say that an essential rectangle Rfj is an essential point if
j=i+1landl=k+1 (so that |R}| = 1).

Remark 3.21. Here, we have a specific reason to coin the term “essential point”;
Fulton [11] defined essential sets for permutations as follows:

Bss(w) = {(i,5) € [n = 1" [ i <w™'(j),j <w(i),w(i+1) < jw ' (j+1) <},

We may rephrase these four conditions in terms of corner sum matrices: For each
(i,7) € [n — 1]?, the following equivalences hold (as easily checked):

1) i<wll) e a@li- 1) = b)),
() j<uli) — @i -1) =l
(3) w(i+1)<j — w(+1,7)=w(,j)+ 1.
4) wlG+1)<i <= w(,j+1)=w(,j)+1.

Thus, (7, 7) is an essential point of w if and only if (7, j) is an element of Ess(w).

As a consequence of Key Lemma, there is a one-to-one correspondence between
essential points of B and ASMs covered by B. Hence every covering relation in
ASM order is an edge relation of ASM graph.

Define a permutation w to be bigrassmannian if there exists a unique pair (4, 7) €
[n —1]? with w™(¢) > w™ (i + 1) and w(j) > w(j + 1).

Proposition 3.22. For A € A,,, the following are equivalent:

(1) A is a bigrassmannian permutation.
(2) A has exactly one essential point.

Proof. (Sketch) Both are equivalent to what we call join-irreducibility; see Lascoux-
Schiitzenberger [13] for details of equivalence of bigrassmannian and join-irreducibility.
Recall from the theory of finite distributive lattices [14] that an element is join-
irreducible in such a lattice if and only if it covers exactly one element. 0
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For example, 1342 = has exactly one essential point so that

1
2
3
4

— =
l\Dl)—‘)—‘H
W N DN =

1342 is bigrassmannian.

Proposition 3.23.
(1) (Chain Property) If A < B, then there exists a directed path

A—> A - Ay— - > A, =8B

such that B(A;) — B(Ai—1) = 1 for all i.
(2) For each A € A,, we have

B(A)=|{Be€ A, | B<A and B is bigrassmannian}|.

Proof. (Sketch) As Reading reviewed [14], (A, <) is (isomorphic to) a finite dis-
tributive lattice graded by [{B € A,, | B < A and B is join-irreducible}|. Since
p(e) = 0 (e the minimum element) and [ increases by one along every covering

relation, this function must coincide with 3. As a result, these two assertions
follow. [

For this reason, we call 8 bigrassmannian statistics. We will show more explicit
formulas for £ in Section 5.

4. TOTAL NONNEGATIVITY AND (SFL) PROPERTY

Toward our main result, we now need key ideas: total nonnegativity and subtraction-
free Laurent (SFL) property. Although these are classical topics in applications of
Linear Algebra (as Ando [1]), here let us review precise definitions of such ideas.

4.1. Total nonnegativity. Let A be a real n by n matrix.

Definition 4.1. We say that A = (a;;) is totally nonnegative (TNN) if the deter-
minant for every square submatrix of A is nonnegative.

Remark 4.2. Some authors use the term “totally positive” to mean the same
thing. Here we followed Drake-Gerrish-Skandera [6, 7].

Let x11,...,%,, be commutative variables and f(z11,- - ,Z,,) a real polyno-
mial. When no confusion arises, we simply write f(z) to mean the polynomial
f(z11,. .., Tpy). Similarly, for a real matrix A = (a;;), we write f(A) to mean the
real number f(aiq, ..., au)-

Definition 4.3. We say that a polynomial f(z) is totally nonnegative (TNN) if
whenever A is a TNN matrix of size n, then f(A) > 0.

Remark 4.4. In particular, if this is the case, then we have a;; > 0 for every (i, j)
because a;; is itself the determinant of a 1 by 1 submatrix.
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Definition 4.5. Given u € S, let " denote the monomial x1,(1) - -+ Tpum). We
call it the permutation monomial for wu.

010 0 01
Example 4.6. Letu=| 1 0 0 Jandv=| 1 0 O |. Then
0 01 010
" — X" = T19T21T33 — T13T21 T30
is TNN since we have the inequality
a1p @
A12G21G033 — Q13021032 = 421 2 e >0
az2 as3
for all TNN matrices A = (a;;).
Now we extend total nonnegativity for ASMs. As above, let zy1,..., 2., be
commutative variables. For our purpose, consider a rational function g(z) =

g(x11, -+, Tp,) rather than a polynomial.

Definition 4.7. We say that a rational function g(z) is totally nonnegative (TNN)
if whenever A is a TNN matrix of size n and moreover g(A) is defined, then
g(A) > 0.

If g(z) is indeed a polynomial, then this definition coincides with the total non-
negativity above.

Definition 4.8. For each A € A, introduce the ASM (Laurent) monomial
xt = H iy’
ij=1

Apparently, this idea includes permutation monomials.

010 0 1 0
Example 4.9. Let B=| 1 0 0 JandC=[ 1 —-1 1
00 1 0 1 0

Then g(z) = ” — &% = 219291733 — 12291795 To3239 is TNN since we have the
inequality

Q22 Aa23
a3z 33

-1
Q(A) = 12021033 — Q12021099 A23A32 = Q12021 4
22

for all TNN matrices A = (a;;) such that ag # 0.

This example suggests the following consequence of Key Lemma. If A — B,
then there exists a unique (4, j, k,1) € [n]* such that

{(pq) € [n]* | apg # bpg} = {(5, %), (5,1), (4, %), (4, D) }-
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It leads to a decomposition of a difference of ASM monomials: Set

AB -— Apq E(AvB) -— H apq __ H bpq
R H T, and x = z,h T b

apg=bpq apqFbpq apqFbpq

Clearly, the latter corresponds to interchangeable entries of A and B. These two
rational functions give the decomposition & — x? = zAPxFAB) Observe that,
Tik T4l

E(4,B) and a Laurent monomial in these

in any case, @ is a product of

'Tjk l’]l

four variables as

bj1

gl

E(A,B) _ ik, i, %k, 05 b, by, bk
€ =Ty LTy Ty Ty — Ly Lyg L T

aix—1_ay+1_ajr+l_a;—1

_ ik .04, Y5k A5
=Ty Ty Ty T — Ly Ly T jl
Tik Ty
. | Tk Tgp
) o a a j J
= x?ﬁkx?ldxﬂikxﬂﬂ
Tk

4.2. (SFL) property. Let f(z) be a real polynomial.

Definition 4.10. We say that f(x) has Subtraction-Free Rational (SFR) property
if f(z) has a rational expression in minors of the matrix x = (x4)7;_; such that its
denominator and numerator do not contain any subtraction. Also say that f(z)
has Subtraction-Free Laurent (SFL) property if f(x) has (SFR) property with a
rational expression such that its denominator is a monomial in minors of x.

We could define these properties for rational functions of xyy,...,%,, in the
exactly same way. For example, g(z) = 219791733 — T19T91755 To3T32 has (SFR)
and (SFL) properties as mentioned above.

4.3. Drake-Gerrish-Skandera’s characterizations. In the last two subsections,
we reviewed two properties on polynomials. What is the relation between (TNN),
(SFL) properties and Bruhat order? Drake-Gerrish-Skandera [6, 7] established the
following equivalence:

Fact 4.11. Let u,v € S,,. Then the following are equivalent:

(1) u < v in Bruhat order.
(2) a* —x¥ is TNN.
(3) x* — x¥ has (SFL) property.

In the next section, we generalize this result as Theorem 5.9.

5. MAIN RESULTS

In this section, we give main results as Theorems 5.1, 5.9 and 5.14 with proofs.



A DIRECTED GRAPH STRUCTURE OF ASMS 19

5.1. Bigrassmannian statistic. A bigrassmannian statistic is a meaningful num-
ber counting entries of corner sum matrices as the rank function of the finite dis-
tributive lattice. We now show a simple and new enumerative formula on entries
of ASMs; this generalizes the author’s formula [12]. the directed graph structure
plays a role for a proof.

Theorem 5.1. For each B € A,,, we have

7,7=1
Proof. Let a(B) be the sum on the right hand side. We will show that g(B) =
a(B) by induction on S(B). If f(B) = 0, then B = e = (¢;;) so that «(B )

> (i_gj)Q d;; = 0. Suppose B(B) > 0. Choose A € A, such that A — B, say A

so that

N

B(B) = B(A) = |Rjj| = (7 — i)(I = k).

It is now enough to show a(B) —a(A) = (j —1)(I — k), that is, « satisfies the same
recursion (which further shows that «(B) is an integer for all B). Four entries
(@K, ait, aji, aj) must be one of the 16 cases listed in Table 1. It follows, in any
case, that

o(B) - a() = 3 PP, —a)
(i—k)? (-0 -k (G-1° :
= 5 5 5 T3 (=) —k)
O
Corollary 5.2. ” 1 )2 forw € S,.

i=1

Proof. Use the theorem. For B = w, we have b;; # 0 if and only if b;; = 1 and
J = w(i). O
1
2
5.2. (¢TNN) and (¢SFL) properties. We next introduce a g-analog of (TNN)
and (SFL) properties. Motivated by Theorem 5.1, we will consider a g-analog of
our variables xi1,...,2,,. From now on, regard ¢ as a variable taking positive
real numbers so that “g'/?” makes sense. For each (i,7), let x5, = ¢z,

and call {z;;,} g-variables. Given a matrix x = (z;5), let x, = (z;;,) denote its
g-analog. Further, let f(z,) mean the polynomial f(x114,...,%nn,) in x;; and q.

Example 5.3. 3(4312) = — (1 -4+ (2-3)>+ (3 -1+ (4 —2)*) =0.
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In particular, the ASM (Laurent) g-monomial for an ASM A is

33:14 = H(xij,q)aij (: qB(A)a:A)

0,J

0 1 0
For example,if A= 1 —1 1 |, then
0 1 0
0 ¢'2 0
Ag=1| ¢2 =1 ¢ | and &2 = ¢*z1279125) T23732.
0 ¢'2 0

Definition 5.4. Fix a positive real number ¢q. Say a square matrix A is locally
TNN at qq if all minors of A,, are nonnegative.

Remark 5.5. Let us make sure that “A is locally TNN at 1”7 is equivalent to
saying “A is TNN” as defined earlier.

Definition 5.6. We say that “A is ¢TNN” if it is locally TNN at ¢ for all ¢ > 0.

We next introduce a g-analog of (extended) total nonnegativity. Let g(z) be a
rational function in xqq,...,Z,, as before.

Definition 5.7. Say g(x) is locally TNN at qo if whenever A is locally TNN at
¢o and moreover g(A,,) is defined, then g(A,) > 0. Say “g(x) is ¢T'NN” if it is
locally TNN at ¢ for all ¢ > 0.

List all minors of z as A = {Aq(z),..., An(x)}.

Definition 5.8. Say a rational function g(z) in x1y, ..., x,, has (¢SFL) property
if there exist F'(z), G(x) € R[x] such that

(1) g(z) = F(x)/G(z),

(2) F(z) =Y ¢y Aiy(x) -+ Ay (z) with ¢;,..;, nonnegative integers, i.e., a
subtraction-free polynomial in minors of x,

(3) G(z) = []; Aj(x)% with d; nonnegative integers, i.e., a monomial in mi-
nors of x and

(4) g(zy) = F(zy)/G(z,) € R(x)[q], i.e., g(z,) is a polynomial in q.

Observe that if g;(x) and go(x) have (¢gSFL) property, then so does g1 + go.
5.3. Characterizations of ASM order.

Theorem 5.9. Let A, B € A,. Then the following are equivalent:

(1) A< B in ASM order.
(2) x4 —x8 is g TNN.
(3) x4 — xB has (qSFL) property.

We prove (1) = (3) = (2) = (1).
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Proof. (1) = (3): The assertion is obvious for A = B. Let us suppose A <
B. We first deal with the case A — B, say A ﬁ> B; this relation belongs to
ij

precisely one of 16 cases in Table 1. Recall that &? — & = xABxFAB) with

P a Laurent monomial in x11, ..., Zm, and xPAB) 5 subtraction-free Laurent
rational expression in minors of x. Hence # — x® has (SFL) property. Moreover,
w)!—xl = P (2 — qu=D1=PgB) is certainly a polynomial in ¢ so that we proved
(¢SFL) property for 4 — . Suppose next A < B. By another interpretation of
ASM order with ASM graph, we can find a directed path

A:AO—)A1—>"'—>AN:B.

Now write
xt — P = (x — M) + (&M — M) £ (2 — gAY,

This is a sum of rational functions all of which have (¢gSFL) property. Hence so
does ¢4 — .

(3) = (2): Suppose g(z) = z* — x” has (¢SFL) property, say g(z) = F(z)/G(x)
as in Definition 5.8. We want to show that g(z) is ¢TNN. For this purpose, we
first verify a local condition: choose gg > 0 and let A’ be a locally TNN matrix at
qo such that G(A] ) # 0. Then g(A; ) = F(A,)/G(A;,) > 0 because each term
in the sum F'(A] ) and each factor in the product G(A;, ) are nonnegative. Thus
g(x) is locally TNN at go. This is true for all gg > 0. Hence g(z) is ¢gTNN.

(2) = (1): This proof is almost same to Drake-Gerrish-Skandera [6, 7]. Nonethe-

less, we repeat it here. Suppose A £ B. We may choose indices k,[ € [n] such that

~ ~ 2 i<kandj<lI

A(k,l) < B(k,l). Now define the matrix A" = (a}.) by a. = t= ar‘l )=
J J 1 otherwise.

It is easy to see that A" is TNN since all square submatrices of A’ have determinant
0,1, or 2. Now z;; = aj; yields

xt —a” , = H (a;j)aij - H (a;j)bij
T =1 i =1
_ H 9aij _ H obij — 9A(kl) _ 9B(kl) (.
i<kj<l i<kj<l
Thus, 4 — 2 is not TNN, i.e., 2% —x” is not locally TNN at 1. Hence &* —x?
is not ¢TNN. 0

5.4. Corollaries. We observe several corollaries. First, ¢ = 1 in Theorem 5.9
recovers this equivalence:

Corollary 5.10. Let A, B € A,,. Then the following are equivalent:

(1) A< B in ASM order.
(2) 4 — xP is TNN.
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(3) A — x®B has (SFL) property.

0 1 0 0 O 0 1 0 0O
1 -1 1 0 0 1 -1 1 00
Example 5.11. Let A = 0O 1 -1 01|, B-= 0 0 0 01
0 0 0 10 0O 1 -1 120
0O 0 1 00 0O 0 1 00
0 1 0 0O
0 0 1 00
and C' = 1 =1 0 0 1 |.Since A— B — C, % — ¢ is TNN and has
0O 1 -1 10
0O 0 1 00
(SFL) property:
xt — 2% = (z* — 2) + (2P — %) =
T12X21X23L35L44L53 ($32$43 —$42$33> + T12023T35L42L44T53 ($21$32 —$31$22)
T22 Ty3733 Ty3 L3222
L12X23735044T53 T32 T33 To1 T22
a T99L39T33043 (xglxgg T T43 + Ts3Taz Tr31 T32 )

As expected, this is a subtraction-free Laurent rational expression in minors of x.
It follows that

A ¢ _ (A __B B __.C
x, —x, = (x; —x;) + (x, —x,)
T12723735044T53 32 T33 To1 22
= T91T32 + T33%40
T9239T33L43 LTa2  T43 T31 T32

Tij—Tij,q

This is a subtraction-free Laurent rational expression in minors of x,; moreover,
B(A) =3+3+5+3+5+3 = 6so0that 2! —x{ = (P —¢"xP) + ("’ — *xC),
certainly a polynomial in q.

Here we record some consequence of this example (motivated by recent develop-
ments on algebraic combinatorics such as total positivity [9], and cluster algebras
[10]); for convenience, we prepare several words. Let us say that a Laurent mono-
mial H” zi? is almost positive if a;; > —1 for all 4,j. Say a minor of a matrix is
small if its 51ze is 1 or 2; it is solid if its rows and columns are consecutive.

Corollary 5.12. If A < B, then £ — x® has a rational expression as the product
L(z) x M (x) such that L(x) is an almost positive Laurent monomial in x11, . . ., Tpy,
and M (z) is a subtraction-free polynomial in only small solid minors of x (without
a constant term).

Proof. By Chain Property, there exists a directed path A — A, — Ay — -+ —
Ay = B such that 8(4;) — B(A4;_1) = 1. As seen from Key Lemma, each x4 —
x4+ is a product of an almost positive Laurent monomial and a subtraction-free

polynomial in only small solid minors without a constant term. Now regarding
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x* — P as a sum of such, find its rational expression with choosing a common

denominator. Thus, we obtain the desired expression. O

TABLE 2. Permutation statistics

Mahonian Eulerian Bigrassmannian

unsigned | ¢-factorial | Eulerian polynomial Unknown

signed | Wachs [17] | Désarménien-Foata [5] | Theorem 5.14

5.5. Signed bigrassmannian statistics. Permutation statistics is one of im-
portant topics in combinatorics on the symmetric groups. In particular, Maho-
nian and Fulerian are well-known examples (Table 2). More recently, there are
some work on signed Mahonian and signed Fulerian statistics as Wachs [17] and
Désarménien-Foata [5]. As one subsequent idea of their work, here we introduce
signed bigrassmannian statistics.

The inversion number {(w) for w € S, is

{(i,5) € [n* | i < j and w(i) > w(5)}]-
The sign of w is (—1)“™) as often appears in the context of determinants. Now re-
call that 5(w) gives a nonnegative integer |{v € S,, | v < w and v bigrassmannian}|

for each permutation w. With these notions, let us introduce a new kind of per-
mutation statistics:

Definition 5.13. Define signed bigrassmannian statistics (or signed bigrassman-
nian polynomial) over S, by

Bula) = 3 (~1) "),

wESy

For example, Bi(q) =1, Bo(q) = 1 — ¢ and Bs(q) = 1 — 2¢ + 2¢® — ¢* (missing a
q? term; see Figure 3).

Theorem 5.14 (Signed bigrassmannian statistics). For all n > 1, we have

n—1

B.(q) = [J(1 - """

k=1

By1(9)*(1—¢")
B, -5(q)

(which is not so obvious from the definition of B,(¢)). We derive this equation
from a series of the lemmas below. Here, we confirm our setting: The notation | |
simply denotes the determinant. Let A = (a;;) be an n by n matrix with n > 2.
We formally define the determinant of the empty (0 by 0) matrix is 1.

The idea of our proof is to show the recursion B,(q) =
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Lemma 5.15 (Dodgson’s condensation). Let Aj- denote the submatriz obtained by
deleting i-th row and j-th column from A. Then, we have
ALl AR = ALl AT

Al =
. AL

provided |Aj"| # 0.
Proof. See Bressoud [2, p.112-113]. O
Next, we consider a g-analog of this formula.

Lemma 5.16 (a g-analog of Dodgson’s condensation). With the same notation
above, we have
|(ADall(AR)q| — "1 1(A7 )l (AT)q|

|(A1R)dl

|Aq| =
provided |(A}"),| # 0.

Proof. Apply Dodgson’s condensation to A = A,:

JADMIA — [AAIIAN
Al = [E]3

in

We evaluate these ﬁve determinants on the right hand side.

(1) (Al = 1(a" aig)t ol = 10" P )ik = 1(ADl-
(2) Tt is similar to show that (A1), = (Aq)".

(3) Using the properties of determinants, we have

[(Ag)n| =

n—1
(g (=9)* /2%3)?24:1’

az-l-lj)?j_11|
( i—j)2—2(i— J)+1)/2az+ )” 1‘

it | (Q(i_j) /291/2ai+1 j)i,j:l |

|
|(q(%+1 3)?/2
= |

—_= q_
n— i—j)2
= ¢ 1)/2‘((]( 3)7/2

= " VR|(AL),].

(4) Tt is similar to show [(A,)}| = ¢"V/2|(A}),| by symmetry of rows and
columns.

(5) 1(Ainl = 1a" 9 ay)i2y) = (a9 Pair )i 2] = [(Af).

a’l+1j)zj 1‘

O

Lemma 5.17 (determinantal expression). Consider the matriv A = (a;;) with
aij =1 for all i,j € [n]. Then, det(A,) = Bn(q). Moreover, |(A}),| = |(AD),| =

[(A)gl = (AD)gl = Bu-1(q) and |(A1)g| = Ba-2(q)-
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Proof. det(Aq) = Zwesn(_l)aw) H?:l Q(ifw(i))Q/z = Zwesn<_1)e(w)qﬁ(w) = Bn(Q)-

In the same way, we can prove the other results for permutation statistics over

Sn—l and Sn_g. ]

Proof of Theorem 5.14. Clearly, Bi(q) = 1 and By(q) = 1 — ¢ are valid. Suppose
n > 3. Apply Dodgson’s condensation to A,. With a;; = 1 for all 7, j, we get

Bn—l (Q)Bn—l (Q) - q(n_l)/2Bn—1 (q>q(n_1)/2Bn—1 <Q)

B.(q) =

Bn—2(Q)
_ Bua(@*1-q¢"")
Bn—?(Q)
By induction, we conclude that
By1(g)*(1—¢"7")
Bn(Q) =
B,—2(q)
n—2 2
kyn—1—k
< (1-4") > .
= l;=_13 (1 i qnfl) _ H(l N qlc)nfk
(1 qk)n—Q—lc k=1
k=1
O
Example 5.18. Observe that
111 1 ¢/% ¢*?
Bs(q)=det | 1 1 1 | =det| ¢"/> 1 ¢?
1 1 1 q4/2 q1/2 1

q
=(1-q’(1-¢)=1-2¢+2¢ —q"
Let us check By(q) =1 —3q+ ¢* + 4¢% — 2¢* — 2¢° — 2¢° + 4¢" + ¢® — 3¢° + ¢*°.
We can see this directly from Table 3. Indeed, our results verify this statistics as
follows:

111 1 1 q1/2 q4/2 qg/z
111 1 q1/2 1 q1/2 q4/2
B = det = det
4(@) 111 1 q4/2 q1/2 1 q1/2
1 1 11 . q9/2 q4/2 ql/2 1
1—gq 2(1 — q2
SR UEY o S

—dq
=(1—q) (1—q2)2(1—q3)
:1_3q+q2+4q3_2q4_2q5_2q6+4q7+q8_3q9+q10
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TABLE 3. signed bigrassmannian statistics over Sy

sign | sign | sign | sign |
1234 + (02134 — | 13124 + |3 ]4123| — | 6
1243 | — | 112143 + | 23142 — |5 (4132 + | 7
1324 — | 12314 + |3 (3214 — |4 |4213| + | 7
1342 + |312341| — | 63241 | + |7 ]4231| — | 9
1423 | + |3 2413 | — |5 |3412| + |8 ]4312| — | 9
1432 — 42431 + |7 (3421 — 94321 + |10

6. CONCLUDING REMARKS

In this article, we introduced a new directed graph structure (ASM graph) into
alternating sign matrices. This generalizes Bruhat graph whose edge relation is
defined by transpositions and length functions. The key idea was to consider
entries of corner sum matrices rather than entries of ASMs.

We established subsequent results of Drake-Gerrish-Skandera [6, 7] on equivalent
characterizations of Bruhat order in two ways; from permutations to ASMs; g¢-
analogs with respect to the bigrassmannian statistic 8. As a by-product, we found
formulas for signed bigrassmannian statistic with a determinantal expression and
Dodgson’s condensation.

We end with several ideas for our subsequent research.

(1)

(2)

Drake-Gerrish-Skandera proved in fact more [6, 7]; Bruhat order is equiv-
alent to the monomial nonnegativity (MNN) as well as the Schur nonneg-
atiwity (SNN). Can we establish some similar results on such properties
from our viewpoints such as ASMs and the ¢g-analog?

Recall that we made use of a g-analog of the determinant ) o (—1)““}).’,33]
(with z;; = 1) and Dodgson’s condensation to find the signed bigrassman-
nian statistic. We next wish to find the unsigned bigrassmannian statis-
tic; Reading [14] originally mentioned this problem. The natural idea is
to consider the permanent of the matrix (¢@~)°/2). How can we evaluate
this?

Recently, there are many references for research on bivariate permutation
statistics such as Mahonian-Eulerian; see Skandera [16], for example. Find
the bivariate Mahonian-bigrassmannian statistics ), ¢ ttw) ghlw),
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