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Abstract. We introduce a new directed graph structure into the set of alter-
nating sign matrices. This includes Bruhat graph (Bruhat order) of the sym-
metric groups as a subgraph (subposet).

Drake-Gerrish-Skandera (2004, 2006) gave characterizations of Bruhat order
in terms of total nonnegativity (TNN) and subtraction-free Laurent (SFL) ex-
pressions for permutation monomials. With our directed graph, we extend their
idea in two ways: first, from permutations to alternating sign matrices; second,
q-analogs (which we name qTNN and qSFL properties). As a by-product, we
obtain a new kind of permutation statistic, the signed bigrassmannian statistics,
using Dodgson’s condensation on determinants.
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1. Introduction

1.1. Bruhat order. Bruhat order has been of great importance in the combina-
torial matrix theory; there are many equivalent characterizations of this order. For
example, one is the transitive closure of the binary relation u → v on Sn to mean
v = ut for some transposition t and ℓ(u) < ℓ(v) (with ℓ the number of inversions).
Other variations are:

• Entrywise order on Corner sum matrices; for example, see Brualdi-Deaett
[3] and Fortin [8].

• Lascoux-Schützenberger’s monotone triangles [13].

In addition to this list, Drake-Gerrish-Skandera [6, 7] found several new charac-
terizations of Bruhat order in terms of permutation monomials:
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Figure 1. ASMs and Related ideas
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Fact 1.1. Let u, v ∈ Sn. Then the following are equivalent:

(1) u ≤ v in Bruhat order.
(2) the polynomial x1u(1) · · · xnu(n) − x1v(1) · · · xnv(n) is TNN.
(3) the polynomial x1u(1) · · · xnu(n) − x1v(1) · · · xnv(n) has (SFL) property.

Here TNN and SFL abbreviate “Totally NonNegative” and “Subtraction-Free
Laurent expression”, respectively; we give details of these terms later.

1.2. Main results. The aim of this article is simply to generalize Drake-Gerrish-
Skandera’s result above in two ways (Theorem 5.9); first, permutations to alter-
nating sign matrices (ASMs); second, we will establish a q-analog of their result.
We also observe some byproducts on permutation statistics (Theorems 5.1 and
5.14). For this purpose, we introduce a new directed graph structure to ASMs as
in the title; we call it ASM graph (Figure 1).

1.3. Outline. This articles consists of six sections. Section 2 serves preliminaries
on permutations and alternating sign matrices. Section 3 gives a precise definition
of ASM graph with notions of essential rectangles and bigrassmannian statistics;
in particular, Key Lemma 3.18 will play a role in the sequel. In Section 4, we
review Total nonnegativity and Subtraction-Free Laurent property. In Section 5,
we give proofs of main results. We end with the conclusion remark in Section 6.
To better understand the global picture of our discussion, it is helpful to keep

Figure 2 in mind.

1.4. Additional note. At the time of writing this article, the author found that
there are overlap with the recent article

R. Brualdi, M. Schroeder, Alternating sign matrices and their
Bruhat order, to appear in Discrete Math.

Brualdi and Schroeder discuss the sequential construction of an ASM from the unit
matrix (corresponding to our directed graph structure) as well as an enumerative
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Figure 2. Global picture of our discussion
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property of B-rank function for ASMs (corresponding to bigrassmannian statistics
in our terminology).
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2. Alternating sign matrices

For a positive integer n, let [n] denote the set {1, 2, . . . , n}. Throughout this
article, we assume that n ≥ 3 to avoid some triviality. By Sn we mean the
symmetric group on [n]. To represent permutations, we often use one-line notation:
“u = i1 · · · in” with ik ∈ [n] means u(k) = ik. For instance, u = 231 means
u(1) = 2, u(2) = 3 and u(3) = 1. Below, A = (aij) and B = (bij) are square
matrices of size n unless otherwise specified. For convenience, we write aij as well
as A(i, j) for a matrix entry of A.

2.1. Alternating sign matrices. We begin with definitions of permutation ma-
trices and alternating sign matrices.

Definition 2.1. We say that A is a permutation matrix (PM) if there exists a
unique permutation u ∈ Sn such that aij = 1 if j = u(i) and aij = 0 otherwise.

In this way, we often identify a permutation and a permutation matrix.
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Figure 3. (A3,≤)
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Definition 2.2. We say that A is an alternating sign matrix (ASM) if for all
(i, j) ∈ [n]2, we have

aij ∈ {−1, 0, 1},
j∑

k=1

aik ∈ {0, 1},

i∑
k=1

akj ∈ {0, 1} and
n∑

k=1

aik =
n∑

k=1

akj = 1.

Denote by An the set of all alternating sign matrices of size n.

Note that every PM is an ASM. Say an ASM is proper if it is not a PM; in other
words, an ASM is proper if and only if it has a −1 entry. Figure 3 shows seven
ASMs in A3; the only one matrix in the middle is proper.

2.2. Corner sum matrices.
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Figure 4. (Ã3,≤)
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Definition 2.3. The corner sum matrix of A ∈ An is the n by n matrix Ã defined
by

Ã(i, j) =
∑

p≤i,q≤j

apq

for all i, j. Denote by Ãn the set of all such matrices.

Example 2.4.

For A =

 0 1 0
1 −1 1
0 1 0

, we have Ã =

 1 1 1
1 1 2
1 2 3

 .

Remark 2.5.

(1) Entries of each corner sum matrix are weakly increasing along rows and

columns: Ã(i, j) ≤ Ã(k, l) if i ≤ k and j ≤ l.
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(2) It is convenient to define aij = 0 and Ã(i, j) = 0 whenever i or j is 0.

Then, we can recover each entry aij from entries of Ã:

aij = Ã(i, j) + Ã(i− 1, j − 1)− Ã(i, j − 1)− Ã(i− 1, j) for i, j ≥ 1.

The correspondence A ↔ Ã between An and Ãn is in fact a bijection; see
Figures 3 and 4, for example.

The following criterion will be useful later.

Fact 2.6 (Robbins-Rumsey [15, p.172, Lemma 1]). Let X be a square matrix

of size n. Then X ∈ Ãn if and only if X(i, n) = X(n, i) = i for all i and
X(i, j)−X(i− 1, j) ∈ {0, 1}, X(i, j)−X(i, j − 1) ∈ {0, 1} for all i, j.

3. Bruhat graph and ASM graph

In this section, we give a precise definition of ASM graph; this is a directed graph
structure of ASMs as in the title of this article. We first review the definition of
Bruhat graph on permutations; we will see that it is a certain subgraph of ASM
graph.

3.1. Bruhat graph. For natural numbers i < j ≤ n, let tij denote the transpo-
sition interchanging i and j. Say a pair (i, j) is an inversion of a permutation
u ∈ Sn if i < j and u(i) > u(j). Let ℓ(u) be the number of inversions of u. Write
u → v if v = utij and ℓ(u) < ℓ(v) (equivalently, (i, j) is an inversion of v). The
directed graph (Sn,→) is the Bruhat graph.

Example 3.1. We have the edge relation 1342 → 4312; in terms of permutation
matrices, we understand this relation as

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

→


0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0


interchanging first and fourth columns (first and third rows).

Definition 3.2. Define Bruhat order u ≤ v in Sn if there exists a directed path
from u to v.

This is indeed a partial order on Sn. Here are more details:

Fact 3.3 (Chain Property). (Sn,≤) is a graded poset ranked by ℓ. In other words,
if u ≤ v, then there exists a directed path u = u0 → u1 → u2 → · · · → uk = v
such that ℓ(ui)− ℓ(ui−1) = 1.

We wish to extend Bruhat order to ASMs (recall that every PM is an ASM).
However, we have to take care of the following two points:
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• Transposing columns or rows of an ASM does not necessarily produce an
ASM. Thus, we need to modify a definition of the edge relation.

• Find a rank function on ASMs, instead of the inversion number, such that
it is monotonically increasing along those directed edges.

We solve these problems with a new definition of a directed edge relation using
corner sum matrices and bigrassmannian statistics.

3.2. ASM order. Make sure that there is an equivalent characterization of Bruhat
order in terms of corner sum matrices (rather than entries of PMs):

Fact 3.4. The following are equivalent:

(1) u ≤ v in Bruhat order in Sn.
(2) ũ(i, j) ≥ ṽ(i, j) for all i, j ∈ [n].

This idea naturally extends to ASMs:

Definition 3.5. Define ASM order A ≤ B in An if Ã(i, j) ≥ B̃(i, j) for all
i, j ∈ [n].

By abuse of language, we also call this “Bruhat order”. Hence (An,≤) is now a
poset.

Remark 3.6. Indeed, (An,≤) is a finite distributive lattice as the MacNeille com-
pletion of Bruhat order (the smallest lattice which contains (Sn,≤) as a subposet).
See Reading [14] for some more details.

3.3. Essential rectangles. As before, letA be an ASM. Consider integers i, j, k, l ∈
[n] such that i < j and k < l. Let

Rkl
ij = {(p, q) ∈ [n]2 | i ≤ p < j and k ≤ q < l}

be rectangular positions in a matrix (here, i ≤ p and k ≤ q are weak inequalities
while p < j and q < l are strict).

Definition 3.7. We say that Rkl
in is an essential rectangle for A if

Ã(p, k) = Ã(p, k − 1), Ã(p, l) = Ã(p, l − 1) + 1,

Ã(i, q) = Ã(i− 1, q), and Ã(j, q) = Ã(j − 1, q) + 1

for all (p, q) ∈ Rkl
ij . Similarly, say Rkl

ij is a dual essential rectangle for A if

Ã(p, k) = Ã(p, k − 1) + 1, Ã(p, l) = Ã(p, l − 1),

Ã(i, q) = Ã(i− 1, q) + 1, and Ã(j, q) = Ã(j − 1, q)

for all (p, q) ∈ Rkl
ij . We call such conditions (dual) essential conditions. Denote by

E(A) (E∗(A)) the set of such (dual) rectangles for A.



A DIRECTED GRAPH STRUCTURE OF ASMS 9

Recall that adjacent entries of any corner summatrix differs only by 0 or 1. These
conditions above describe “boundary conditions” on these rectangular positions.

Note: we understand Ã(p, q) = 0 if p or q is 0; we often omit these zero entries
when we write a corner sum matrix.

Example 3.8. On the one hand, the permutation 4312 has an essential rectangle
R14

13 since

4̃312 =


0 0 0 1
0 0 1 2
1 1 2 3
1 2 3 4

 .

On the other hand, the permutation 1342 has a dual essential rectangle R14
13 since

1̃342 =


1 1 1 1
1 1 2 2
1 1 2 3
1 2 3 4

 .

As we see, underlined positions indicate such rectangles.

Proposition 3.9. Let u ∈ Sn and i < j. Then the following are equivalent:

(1) (i, j) is an inversion of u.

(2) R
u(j),u(i)
i,j is an essential rectangle for u.

Proof. If (i, j) is an inversion of u, then there exist two 1s at (i, u(i)) and (j, u(j))
positions in the permutation matrix u. It follows from the definition of a corner sum

matrix that R
u(j)u(i)
ij satisfies the essential conditions described above. Conversely,

if R
u(j)u(i)
ij is an essential rectangle for u, then it is necessarily that u(j) < u(i). □

Definition 3.10. For i < j and k < l, let R̃kl
ij be the n by n matrix such that

its (p, q)-entry is 1 if (p, q) ∈ Rkl
ij or 0 otherwise. Define a rectangular operator

r̃klij : Ãn → Ãn

r̃klij (Ã) =


Ã+ R̃kl

ij if Rkl
ij ∈ E(A),

Ã− R̃kl
ij if Rkl

ij ∈ E∗(A),

A otherwise.

So this operator changes entries of a consecutive submatrix of entries of a corner
sum matrix.
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Example 3.11.

1̃342 = r̃1413(4̃312) =


0 0 0 1
0 0 1 2
1 1 2 3
1 2 3 4


︸ ︷︷ ︸

4̃312

+


1 1 1 0
1 1 1 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

R̃14
13

.

Similarly, define an operator rklij : An → An with rklij (A) being the ASM whose

corner sum matrix is r̃klij (Ã).

Remark 3.12.

(1) Let us be careful: whenever Rkl
ij ∈ E(A), is the resulting matrix Ã + R̃kl

ij

an element of Ãn? Yes. Indeed, adjacent entries of Ã+ R̃kl
ij differ only by

0 or 1 (sharing the n-th row and column entries of Ã). Fact 2.6 guarantees

that Ã+ R̃kl
ij is a corner sum matrix for some (unique) ASM.

(2) Observe that rklij is an involution, i.e., (rklij )
2A = A.

With this idea, it is natural to introduce the following statistic for ASMs as (the
negative of) a sum of entries of corner sum matrices.

Definition 3.13. For i, j, let i ∧ j = min{i, j}. For A ∈ An, define the bigrass-
mannian statistic

β(A) =
n∑

i,j=1

(i ∧ j)−
n∑

i,j=1

Ã(i, j).

Here the constant
∑

i ∧ j comes for normalization so that β(e) = 0 where e is
the unit of Sn so that ẽ(i, j) = i ∧ j.
Observe the following dichotomy: for each Rkl

ij ∈ E(A) ∪ E∗(A), we have either

β(rklijA) < β(A) ⇐⇒ Rkl
ij ∈ E(A) or β(rklijA) > β(A) ⇐⇒ Rkl

ij ∈ E∗(A). With
notions of essential rectangles and this statistic, we are now ready to introduce
ASM graph as a generalization of Bruhat graph.

Definition 3.14. Define an edge relation A
kl→
ij

B in An if B = rklij (A) and β(A) <

β(B). By A → B we mean A
kl→
ij

B for some i, j, k, l. Call the directed graph

(An,→) ASM graph.

It naturally induces the same directed graph structure on Ãn; by abuse of lan-
guage, we call it ASM graph as well.
As shown above, every edge in Bruhat graph is also an edge in ASM graph; see
Figure 5. In terms of this new graph, we may characterize ASM order as follows:

Proposition 3.15. The following are equivalent:
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Figure 5. (A3,→)
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(1) A ≤ B in ASM order.
(2) There exists a directed path from A to B.

3.4. Key Lemma. We defined the edge relation for two ASMs in terms of their
corner sum matrices. Along this relation, what happens back to entries of the two
ASMs? Key Lemma 3.18 below answers this question completely; it will play a
key role to prove main results in Section 5. Before that, we take auxiliary two
steps with the following lemmas.

Lemma 3.16 (nonpositivity). Let B ∈ An. Suppose Rkl
ij ∈ E(B) is given. Then,

bik ≤ 0 and bjl ≤ 0.

Proof. Suppose Rkl
ij ∈ E(B). Thanks to one of the essential conditions B̃(i, k) =

B̃(i, k − 1), we have

bik = B̃(i, k)+B̃(i−1, k−1)−B̃(i, k−1)−B̃(i−1, k) = B̃(i−1, k−1)−B̃(i−1, k) ≤ 0.
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Figure 6. (Ã3,→)
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Moreover, two of essential conditions B̃(j, l−1) = B̃(j−1, l−1)+1 and B̃(j−1, l) =

B̃(j − 1, l − 1) + 1 imply that

bjl = B̃(j, l) + B̃(j − 1, l − 1)− B̃(j, l − 1)− B̃(j − 1, l)

= B̃(j, l)− B̃(j − 1, l − 1)− 2 ≤ 0.

□
Lemma 3.17 (nonnegativity). Let B ∈ An. Suppose Rkl

ij ∈ E(B) is given. Then,
bil ≥ 0 and bjk ≥ 0.

Proof. Thanks to one of essential conditions B̃(i, l) = B̃(i, l − 1) + 1, we have

bil = B̃(i, l)+B̃(i−1, l−1)−B̃(i, l−1)−B̃(i−1, l) = B̃(i−1, l−1)−B̃(i−1, l)+1 ≥ 0.

It is similar to show that bjk ≥ 0. □
These two lemmas assert that each of bik, bil, bjk, bjl can take two values. In total,

there are 16 cases as listed in Table 1.
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Table 1. 16 kinds of edge relations A → B in ASM graph

type

 bik bil

bjk bjl

  aik ail

ajk ajl

 type

 bik bil

bjk bjl

  aik ail

ajk ajl


1

 0 1

1 0

  1 0

0 1

 9

 −1 1

1 0

  0 0

0 1


2

 0 0

1 0

  1 −1

0 1

 10

 −1 0

1 0

  0 −1

0 1


3

 0 1

0 0

  1 0

−1 1

 11

 −1 1

0 0

  0 0

−1 1


4

 0 0

0 0

  1 −1

−1 1

 12

 −1 0

0 0

  0 −1

−1 1


5

 0 1

1 −1

  1 0

0 0

 13

 −1 1

1 −1

  0 0

0 0


6

 0 0

1 −1

  1 −1

0 0

 14

 −1 0

1 −1

  0 −1

0 0


7

 0 1

0 −1

  1 0

−1 0

 15

 −1 1

0 −1

  0 0

−1 0


8

 0 0

0 −1

  1 −1

−1 0

 16

 −1 0

0 −1

  0 −1

−1 0



Key Lemma 3.18. Let B ∈ An and Rkl
ij ∈ E(B). Consider a square matrix A of

size n. Then, the following are equivalent:

(1) A
kl→
ij

B.

(2) The entries (aik, ail, ajk, ajl) satisfy(
aik ail
ajk ajl

)
−
(

bik bil
bjk bjl

)
=

(
1 −1
−1 1

)
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as listed in Table 1. Moreover, if (p, q) ̸∈ {(i, k), (i, l), (j, k), (j, l)}, then
apq = bpq.

Proof. (1) =⇒ (2): Suppose Ã = B̃ + R̃kl
ij so that Ã(p, q) = B̃(p, q) if and only if

(p, q) ̸∈ Rkl
ij . Thus, equalities

aik = Ã(i, k) + Ã(i− 1, k − 1)− Ã(i− 1, k)− Ã(i, k − 1) and

bik = B̃(i, k) + B̃(i− 1, k − 1)− B̃(i− 1, k)− B̃(i, k − 1)

show that aik−bik = Ã(i, k)−B̃(i, k) = 1 (the other six terms are gone). Similarly,

ail = Ã(i, l) + Ã(i− 1, l − 1)− Ã(i− 1, l)− Ã(i, l − 1) and

bil = B̃(i, l) + B̃(i− 1, l − 1)− B̃(i− 1, l)− B̃(i, l − 1)

show that ail−bil = −Ã(i, l−1)+B̃(i, l−1) = −1. In the same way, ajk−bjk = −1.
Likewise,

ajl = Ã(j, l) + Ã(j − 1, l − 1)− Ã(j − 1, l)− Ã(j, l − 1) and

bjl = B̃(j, l) + B̃(j − 1, l − 1)− B̃(j − 1, l)− B̃(j, l − 1)

show that ajl − bjl = Ã(j − 1, l− 1)− B̃(j − 1, l− 1) = 1. For other (p, q), observe
that |{(p, q), (p− 1, q − 1), (p− 1, q), (p, q − 1)} ∩ Rkl

ij | is either 0, 2 or 4. If it is 0
or 4, then clearly apq = bpq follows. If it is 2, then either p ∈ {i, j} or q ∈ {k, l}.
Here suppose p = i and q ̸∈ {k, l} so that

apq − bpq = Ã(p, q)− B̃(p, q)− (Ã(p, q − 1)− B̃(p, q − 1)) = 1− 1 = 0.

It is analogous to verify other cases.
(2) =⇒ (1): We can reverse most of the proof above. □
Table 1 indicates such 16 edge relations; note that only the type 1 occurs in

Bruhat graphs. It is convenient to say that a 2 by 2 minor in an ASM is inter-
changeable if it is one of the 32 patterns in the table.

Example 3.19. Let B =


0 1 0 0 0
0 0 1 0 0
1 −1 0 0 1
0 1 −1 1 0
0 0 1 0 0

 be an ASM of size 5. Its corner

sum matrix is


0 1 1 1 1
0 1 2 2 2
1 1 2 2 3
1 2 2 3 4
1 2 3 4 5

. Here the underlined part refers to R34
45. Then,
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we have

A =


0 1 0 0 0
0 0 1 0 0
1 −1 0 0 1
0 1 0 0 0
0 0 0 1 0

→


0 1 0 0 0
0 0 1 0 0
1 −1 0 0 1
0 1 −1 1 0
0 0 1 0 0

 = B.

This is type 9.

3.5. Essential points. As seen in the previous example, an essential rectangle
can be of size 1.

Definition 3.20. We say that an essential rectangle Rkl
ij is an essential point if

j = i+ 1 and l = k + 1 (so that |Rkl
ij | = 1).

Remark 3.21. Here, we have a specific reason to coin the term “essential point”;
Fulton [11] defined essential sets for permutations as follows:

Ess(w) = {(i, j) ∈ [n− 1]2 | i < w−1(j), j < w(i), w(i+ 1) ≤ j, w−1(j + 1) ≤ i}.

We may rephrase these four conditions in terms of corner sum matrices: For each
(i, j) ∈ [n− 1]2, the following equivalences hold (as easily checked):

(1) i < w−1(j) ⇐⇒ w̃(i− 1, j) = w̃(i, j).
(2) j < w(i) ⇐⇒ w̃(i, j − 1) = w̃(i, j).
(3) w(i+ 1) ≤ j ⇐⇒ w̃(i+ 1, j) = w̃(i, j) + 1.
(4) w−1(j + 1) ≤ i ⇐⇒ w̃(i, j + 1) = w̃(i, j) + 1.

Thus, (i, j) is an essential point of w if and only if (i, j) is an element of Ess(w).

As a consequence of Key Lemma, there is a one-to-one correspondence between
essential points of B and ASMs covered by B. Hence every covering relation in
ASM order is an edge relation of ASM graph.
Define a permutation w to be bigrassmannian if there exists a unique pair (i, j) ∈

[n− 1]2 with w−1(i) > w−1(i+ 1) and w(j) > w(j + 1).

Proposition 3.22. For A ∈ An, the following are equivalent:

(1) A is a bigrassmannian permutation.
(2) A has exactly one essential point.

Proof. (Sketch) Both are equivalent to what we call join-irreducibility ; see Lascoux-
Schützenberger [13] for details of equivalence of bigrassmannian and join-irreducibility.
Recall from the theory of finite distributive lattices [14] that an element is join-
irreducible in such a lattice if and only if it covers exactly one element. □
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For example, 1̃342 =


1 1 1 1
1 1 2 2
1 1 2 3
1 2 3 4

 has exactly one essential point so that

1342 is bigrassmannian.

Proposition 3.23.

(1) (Chain Property) If A ≤ B, then there exists a directed path

A → A1 → A2 → · · · → Ak = B

such that β(Ai)− β(Ai−1) = 1 for all i.
(2) For each A ∈ An, we have

β(A) = |{B ∈ An | B ≤ A and B is bigrassmannian}|.

Proof. (Sketch) As Reading reviewed [14], (An,≤) is (isomorphic to) a finite dis-
tributive lattice graded by |{B ∈ An | B ≤ A and B is join-irreducible}|. Since
β(e) = 0 (e the minimum element) and β increases by one along every covering
relation, this function must coincide with β. As a result, these two assertions
follow. □
For this reason, we call β bigrassmannian statistics. We will show more explicit

formulas for β in Section 5.

4. Total nonnegativity and (SFL) property

Toward our main result, we now need key ideas: total nonnegativity and subtraction-
free Laurent (SFL) property. Although these are classical topics in applications of
Linear Algebra (as Ando [1]), here let us review precise definitions of such ideas.

4.1. Total nonnegativity. Let A be a real n by n matrix.

Definition 4.1. We say that A = (aij) is totally nonnegative (TNN) if the deter-
minant for every square submatrix of A is nonnegative.

Remark 4.2. Some authors use the term “totally positive” to mean the same
thing. Here we followed Drake-Gerrish-Skandera [6, 7].

Let x11, . . . , xnn be commutative variables and f(x11, · · · , xnn) a real polyno-
mial. When no confusion arises, we simply write f(x) to mean the polynomial
f(x11, . . . , xnn). Similarly, for a real matrix A = (aij), we write f(A) to mean the
real number f(a11, . . . , ann).

Definition 4.3. We say that a polynomial f(x) is totally nonnegative (TNN) if
whenever A is a TNN matrix of size n, then f(A) ≥ 0.

Remark 4.4. In particular, if this is the case, then we have aij ≥ 0 for every (i, j)
because aij is itself the determinant of a 1 by 1 submatrix.
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Definition 4.5. Given u ∈ Sn, let xu denote the monomial x1u(1) · · · xnu(n). We
call it the permutation monomial for u.

Example 4.6. Let u =

 0 1 0
1 0 0
0 0 1

 and v =

 0 0 1
1 0 0
0 1 0

. Then

xu − xv = x12x21x33 − x13x21x32

is TNN since we have the inequality

a12a21a33 − a13a21a32 = a21

∣∣∣∣ a12 a13
a32 a33

∣∣∣∣ ≥ 0

for all TNN matrices A = (aij).

Now we extend total nonnegativity for ASMs. As above, let x11, . . . , xnn be
commutative variables. For our purpose, consider a rational function g(x) =
g(x11, · · · , xnn) rather than a polynomial.

Definition 4.7. We say that a rational function g(x) is totally nonnegative (TNN)
if whenever A is a TNN matrix of size n and moreover g(A) is defined, then
g(A) ≥ 0.

If g(x) is indeed a polynomial, then this definition coincides with the total non-
negativity above.

Definition 4.8. For each A ∈ An, introduce the ASM (Laurent) monomial

xA :=
n∏

i,j=1

x
aij
ij .

Apparently, this idea includes permutation monomials.

Example 4.9. Let B =

 0 1 0
1 0 0
0 0 1

 and C =

 0 1 0
1 −1 1
0 1 0

.

Then g(x) = xB − xC = x12x21x33 − x12x21x
−1
22 x23x32 is TNN since we have the

inequality

g(A) = a12a21a33 − a12a21a
−1
22 a23a32 = a12a21

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣
a22

≥ 0

for all TNN matrices A = (aij) such that a22 ̸= 0.

This example suggests the following consequence of Key Lemma. If A → B,
then there exists a unique (i, j, k, l) ∈ [n]4 such that

{(p, q) ∈ [n]2 | apq ̸= bpq} = {(i, k), (i, l), (j, k), (j, l)}.
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It leads to a decomposition of a difference of ASM monomials: Set

xAB :=
∏

apq=bpq

xapq
pq and xE(A,B) :=

∏
apq ̸=bpq

xapq
pq −

∏
apq ̸=bpq

xbpq
pq .

Clearly, the latter corresponds to interchangeable entries of A and B. These two
rational functions give the decomposition xA − xB = xABxE(A,B). Observe that,

in any case, xE(A,B) is a product of

∣∣∣∣ xik xil

xjk xjl

∣∣∣∣ and a Laurent monomial in these

four variables as

xE(A,B) = xaik
ik xail

il x
ajk
jk x

ajl
jl − xbik

ik xbil
il x

bjk
jk x

bjl
jl

= xaik
ik xail

il x
ajk
jk x

ajl
jl − xaik−1

ik xail+1
il x

ajk+1

jk x
ajl−1

jl

= xaik
ik xail

il x
ajk
jk x

ajl
jl

∣∣∣∣ xik xil

xjk xjl

∣∣∣∣
xikxjl

.

4.2. (SFL) property. Let f(x) be a real polynomial.

Definition 4.10. We say that f(x) has Subtraction-Free Rational (SFR) property
if f(x) has a rational expression in minors of the matrix x = (xij)

n
i,j=1 such that its

denominator and numerator do not contain any subtraction. Also say that f(x)
has Subtraction-Free Laurent (SFL) property if f(x) has (SFR) property with a
rational expression such that its denominator is a monomial in minors of x.

We could define these properties for rational functions of x11, . . . , xnn in the
exactly same way. For example, g(x) = x12x21x33 − x12x21x

−1
22 x23x32 has (SFR)

and (SFL) properties as mentioned above.

4.3. Drake-Gerrish-Skandera’s characterizations. In the last two subsections,
we reviewed two properties on polynomials. What is the relation between (TNN),
(SFL) properties and Bruhat order? Drake-Gerrish-Skandera [6, 7] established the
following equivalence:

Fact 4.11. Let u, v ∈ Sn. Then the following are equivalent:

(1) u ≤ v in Bruhat order.
(2) xu − xv is TNN.
(3) xu − xv has (SFL) property.

In the next section, we generalize this result as Theorem 5.9.

5. Main results

In this section, we give main results as Theorems 5.1, 5.9 and 5.14 with proofs.
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5.1. Bigrassmannian statistic. A bigrassmannian statistic is a meaningful num-
ber counting entries of corner sum matrices as the rank function of the finite dis-
tributive lattice. We now show a simple and new enumerative formula on entries
of ASMs; this generalizes the author’s formula [12]. the directed graph structure
plays a role for a proof.

Theorem 5.1. For each B ∈ An, we have

β(B) =
n∑

i,j=1

(i− j)2

2
bij.

Proof. Let α(B) be the sum on the right hand side. We will show that β(B) =
α(B) by induction on β(B). If β(B) = 0, then B = e = (δij) so that α(B) =∑ (i−j)2

2
δij = 0. Suppose β(B) > 0. Choose A ∈ An such that A → B, say A

kl→
ij

B

so that

β(B)− β(A) = |Rkl
ij | = (j − i)(l − k).

It is now enough to show α(B)−α(A) = (j− i)(l−k), that is, α satisfies the same
recursion (which further shows that α(B) is an integer for all B). Four entries
(aik, ail, ajk, ajl) must be one of the 16 cases listed in Table 1. It follows, in any
case, that

α(B)− α(A) =
n∑

p,q=1

(p− q)2

2
(bpq − apq)

= −(i− k)2

2
+

(i− l)2

2
+

(j − k)2

2
− (j − l)2

2
= (j − i)(l − k).

□

Corollary 5.2. β(w) =
n∑

i=1

1

2
(i− w(i))2 for w ∈ Sn.

Proof. Use the theorem. For B = w, we have bij ̸= 0 if and only if bij = 1 and
j = w(i). □

Example 5.3. β(4312) =
1

2

(
(1− 4)2 + (2− 3)2 + (3− 1)2 + (4− 2)2

)
= 9.

5.2. (qTNN) and (qSFL) properties. We next introduce a q-analog of (TNN)
and (SFL) properties. Motivated by Theorem 5.1, we will consider a q-analog of
our variables x11, . . . , xnn. From now on, regard q as a variable taking positive
real numbers so that “q1/2” makes sense. For each (i, j), let xij,q := q(i−j)2/2xij

and call {xij,q} q-variables. Given a matrix x = (xij), let xq = (xij,q) denote its
q-analog. Further, let f(xq) mean the polynomial f(x11,q, . . . , xnn,q) in xij and q.
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In particular, the ASM (Laurent) q-monomial for an ASM A is

xA
q :=

∏
i,j

(xij,q)
aij (= qβ(A)xA).

For example, if A =

 0 1 0
1 −1 1
0 1 0

, then

Aq =

 0 q1/2 0
q1/2 −1 q1/2

0 q1/2 0

 and xA
q = q2x12x21x

−1
22 x23x32.

Definition 5.4. Fix a positive real number q0. Say a square matrix A is locally
TNN at q0 if all minors of Aq0 are nonnegative.

Remark 5.5. Let us make sure that “A is locally TNN at 1” is equivalent to
saying “A is TNN” as defined earlier.

Definition 5.6. We say that “A is qTNN ” if it is locally TNN at q for all q > 0.

We next introduce a q-analog of (extended) total nonnegativity. Let g(x) be a
rational function in x11, . . . , xnn as before.

Definition 5.7. Say g(x) is locally TNN at q0 if whenever A is locally TNN at
q0 and moreover g(Aq0) is defined, then g(Aq0) ≥ 0. Say “g(x) is qTNN ” if it is
locally TNN at q for all q > 0.

List all minors of x as ∆ = {∆1(x), . . . ,∆m(x)}.

Definition 5.8. Say a rational function g(x) in x11, . . . , xnn has (qSFL) property
if there exist F (x), G(x) ∈ R[x] such that

(1) g(x) = F (x)/G(x),
(2) F (x) =

∑
ci1···ik∆i1(x) · · ·∆ik(x) with ci1···ik nonnegative integers, i.e., a

subtraction-free polynomial in minors of x,
(3) G(x) =

∏
j ∆j(x)

dj with dj nonnegative integers, i.e., a monomial in mi-
nors of x and

(4) g(xq) = F (xq)/G(xq) ∈ R(x)[q], i.e., g(xq) is a polynomial in q.

Observe that if g1(x) and g2(x) have (qSFL) property, then so does g1 + g2.

5.3. Characterizations of ASM order.

Theorem 5.9. Let A,B ∈ An. Then the following are equivalent:

(1) A ≤ B in ASM order.
(2) xA − xB is qTNN.
(3) xA − xB has (qSFL) property.

We prove (1) =⇒ (3) =⇒ (2) =⇒ (1).
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Proof. (1) =⇒ (3): The assertion is obvious for A = B. Let us suppose A <

B. We first deal with the case A → B, say A
kl→
ij

B; this relation belongs to

precisely one of 16 cases in Table 1. Recall that xA − xB = xABxE(A,B) with
xAB a Laurent monomial in x11, . . . , xnn and xE(A,B) a subtraction-free Laurent
rational expression in minors of x. Hence xA −xB has (SFL) property. Moreover,
xA
q −xB

q = qβ(A)(xA−q(j−i)(l−k)xB) is certainly a polynomial in q so that we proved

(qSFL) property for xA −xB. Suppose next A < B. By another interpretation of
ASM order with ASM graph, we can find a directed path

A = A0 → A1 → · · · → AN = B.

Now write

xA − xB = (xA0 − xA1) + (xA1 − xA2) + · · ·+ (xAN−1 − xAN ).

This is a sum of rational functions all of which have (qSFL) property. Hence so
does xA − xB.
(3) =⇒ (2): Suppose g(x) = xA−xB has (qSFL) property, say g(x) = F (x)/G(x)
as in Definition 5.8. We want to show that g(x) is qTNN. For this purpose, we
first verify a local condition: choose q0 > 0 and let A′ be a locally TNN matrix at
q0 such that G(A′

q0
) ̸= 0. Then g(A′

q0
) = F (A′

q0
)/G(A′

q0
) ≥ 0 because each term

in the sum F (A′
q0
) and each factor in the product G(A′

q0
) are nonnegative. Thus

g(x) is locally TNN at q0. This is true for all q0 > 0. Hence g(x) is qTNN.
(2) =⇒ (1): This proof is almost same to Drake-Gerrish-Skandera [6, 7]. Nonethe-
less, we repeat it here. Suppose A ̸≤ B. We may choose indices k, l ∈ [n] such that

Ã(k, l) < B̃(k, l). Now define the matrix A′ = (a′ij) by a′ij =

{
2 i ≤ k and j ≤ l

1 otherwise.

It is easy to see that A′ is TNN since all square submatrices of A′ have determinant
0, 1, or 2. Now xij = a′ij yields

xA − xB
∣∣∣
xij=a′ij

=
n∏

i,j=1

(a′ij)
aij −

n∏
i,j=1

(a′ij)
bij

=
∏

i≤k,j≤l

2aij −
∏

i≤k,j≤l

2bij = 2Ã(k,l) − 2B̃(k,l) < 0.

Thus, xA−xB is not TNN, i.e., xA−xB is not locally TNN at 1. Hence xA−xB

is not qTNN. □
5.4. Corollaries. We observe several corollaries. First, q = 1 in Theorem 5.9
recovers this equivalence:

Corollary 5.10. Let A,B ∈ An. Then the following are equivalent:

(1) A ≤ B in ASM order.
(2) xA − xB is TNN.
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(3) xA − xB has (SFL) property.

Example 5.11. Let A =


0 1 0 0 0
1 −1 1 0 0
0 1 −1 0 1
0 0 0 1 0
0 0 1 0 0

, B =


0 1 0 0 0
1 −1 1 0 0
0 0 0 0 1
0 1 −1 1 0
0 0 1 0 0



and C =


0 1 0 0 0
0 0 1 0 0
1 −1 0 0 1
0 1 −1 1 0
0 0 1 0 0

. Since A → B → C, xA − xC is TNN and has

(SFL) property:

xA − xC = (xA − xB) + (xB − xC) =

x12x21x23x35x44x53

x22

(
x32x43 − x42x33

x43x33

)
+

x12x23x35x42x44x53

x43

(
x21x32 − x31x22

x32x22

)
=

x12x23x35x44x53

x22x32x33x43

(
x21x32

∣∣∣∣ x32 x33

x42 x43

∣∣∣∣+ x33x42

∣∣∣∣ x21 x22

x31 x32

∣∣∣∣) .

As expected, this is a subtraction-free Laurent rational expression in minors of x.
It follows that

xA
q − xC

q = (xA
q − xB

q ) + (xB
q − xC

q )

=
x12x23x35x44x53

x22x32x33x43

(
x21x32

∣∣∣∣ x32 x33

x42 x43

∣∣∣∣+ x33x42

∣∣∣∣ x21 x22

x31 x32

∣∣∣∣)∣∣∣∣
xij 7→xij,q

.

This is a subtraction-free Laurent rational expression in minors of xq; moreover,
β(A) = 1

2
+ 1

2
+ 1

2
+ 1

2
+ 4

2
+ 4

2
= 6 so that xA

q −xC
q = (q6xA−q7xB)+(q7xB−q8xC),

certainly a polynomial in q.

Here we record some consequence of this example (motivated by recent develop-
ments on algebraic combinatorics such as total positivity [9], and cluster algebras
[10]); for convenience, we prepare several words. Let us say that a Laurent mono-
mial

∏
i,j x

aij
ij is almost positive if aij ≥ −1 for all i, j. Say a minor of a matrix is

small if its size is 1 or 2; it is solid if its rows and columns are consecutive.

Corollary 5.12. If A < B, then xA−xB has a rational expression as the product
L(x)×M(x) such that L(x) is an almost positive Laurent monomial in x11, . . . , xnn

and M(x) is a subtraction-free polynomial in only small solid minors of x (without
a constant term).

Proof. By Chain Property, there exists a directed path A → A1 → A2 → · · · →
Ak = B such that β(Ai) − β(Ai−1) = 1. As seen from Key Lemma, each xAi −
xAi+1 is a product of an almost positive Laurent monomial and a subtraction-free
polynomial in only small solid minors without a constant term. Now regarding
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xA − xB as a sum of such, find its rational expression with choosing a common
denominator. Thus, we obtain the desired expression. □

Table 2. Permutation statistics

Mahonian Eulerian Bigrassmannian

unsigned q-factorial Eulerian polynomial Unknown

signed Wachs [17] Désarménien-Foata [5] Theorem 5.14

5.5. Signed bigrassmannian statistics. Permutation statistics is one of im-
portant topics in combinatorics on the symmetric groups. In particular, Maho-
nian and Eulerian are well-known examples (Table 2). More recently, there are
some work on signed Mahonian and signed Eulerian statistics as Wachs [17] and
Désarménien-Foata [5]. As one subsequent idea of their work, here we introduce
signed bigrassmannian statistics.
The inversion number ℓ(w) for w ∈ Sn is

|{(i, j) ∈ [n]2 | i < j and w(i) > w(j)}|.
The sign of w is (−1)ℓ(w) as often appears in the context of determinants. Now re-
call that β(w) gives a nonnegative integer |{v ∈ Sn | v ≤ w and v bigrassmannian}|
for each permutation w. With these notions, let us introduce a new kind of per-
mutation statistics:

Definition 5.13. Define signed bigrassmannian statistics (or signed bigrassman-
nian polynomial) over Sn by

Bn(q) =
∑
w∈Sn

(−1)ℓ(w)qβ(w).

For example, B1(q) = 1, B2(q) = 1− q and B3(q) = 1− 2q+ 2q3 − q4 (missing a
q2 term; see Figure 3).

Theorem 5.14 (Signed bigrassmannian statistics). For all n ≥ 1, we have

Bn(q) =
n−1∏
k=1

(1− qk)n−k.

The idea of our proof is to show the recursion Bn(q) =
Bn−1(q)

2(1− qn−1)

Bn−2(q)
(which is not so obvious from the definition of Bn(q)). We derive this equation
from a series of the lemmas below. Here, we confirm our setting: The notation | |
simply denotes the determinant. Let A = (aij) be an n by n matrix with n ≥ 2.
We formally define the determinant of the empty (0 by 0) matrix is 1.
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Lemma 5.15 (Dodgson’s condensation). Let Ai
j denote the submatrix obtained by

deleting i-th row and j-th column from A. Then, we have

|A| = |A1
1||An

n| − |A1
n||An

1 |
|A1n

1n|

provided |A1n
1n| ̸= 0.

Proof. See Bressoud [2, p.112–113]. □

Next, we consider a q-analog of this formula.

Lemma 5.16 (a q-analog of Dodgson’s condensation). With the same notation
above, we have

|Aq| =
|(A1

1)q||(An
n)q| − qn−1|(A1

n)q||(An
1 )q|

|(A1n
1n)q|

provided |(A1n
1n)q| ̸= 0.

Proof. Apply Dodgson’s condensation to A = Aq:

|Aq| =
|(Aq)

1
1||(Aq)

n
n| − |(Aq)

1
n||(Aq)

n
1 |

|(Aq)1n1n|
We evaluate these five determinants on the right hand side.

(1) |(Aq)
1
1| = |(q(i−j)2/2aij)

n
i,j=2| = |(q(i−j)2/2ai+1,j+1)

n−1
i,j=1| = |(A1

1)q|.
(2) It is similar to show that (An

n)q = (Aq)
n
n.

(3) Using the properties of determinants, we have

|(Aq)
1
n| = |(q(i−j)2/2aij)

n,n−1
i=2,j=1|

= |(q(i+1−j)2/2ai+1,j)
n−1
i,j=1|

= |(q((i−j)2−2(i−j)+1)/2ai+1,j)
n−1
i,j=1|

= q−
∑

i+
∑

j|(q(i−j)2/2q1/2ai+1,j)
n−1
i,j=1|

= q(n−1)/2|(q(i−j)2/2ai+1,j)
n−1
i,j=1|

= q(n−1)/2|(A1
n)q|.

(4) It is similar to show |(Aq)
n
1 | = q(n−1)/2|(An

1 )q| by symmetry of rows and
columns.

(5) |(Aq)
1n
1n| = |(q(i−j)2/2aij)

n−1
i,j=2| = |(q(i−j)2/2ai+1,j+1)

n−2
i,j=1| = |(A1n

1n)q|.
□

Lemma 5.17 (determinantal expression). Consider the matrix A = (aij) with
aij = 1 for all i, j ∈ [n]. Then, det(Aq) = Bn(q). Moreover, |(A1

1)q| = |(An
n)q| =

|(A1
n)q| = |(An

1 )q| = Bn−1(q) and |(A1n
1n)q| = Bn−2(q).
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Proof. det(Aq) =
∑

w∈Sn
(−1)ℓ(w)

∏n
i=1 q

(i−w(i))2/2 =
∑

w∈Sn
(−1)ℓ(w)qβ(w) = Bn(q).

In the same way, we can prove the other results for permutation statistics over
Sn−1 and Sn−2. □
Proof of Theorem 5.14. Clearly, B1(q) = 1 and B2(q) = 1 − q are valid. Suppose
n ≥ 3. Apply Dodgson’s condensation to Aq. With aij = 1 for all i, j, we get

Bn(q) =
Bn−1(q)Bn−1(q)− q(n−1)/2Bn−1(q)q

(n−1)/2Bn−1(q)

Bn−2(q)

=
Bn−1(q)

2(1− qn−1)

Bn−2(q)
.

By induction, we conclude that

Bn(q) =
Bn−1(q)

2(1− qn−1)

Bn−2(q)

=

(
n−2∏
k=1

(1− qk)n−1−k

)2

n−3∏
k=1

(1− qk)n−2−k

(1− qn−1) =
n−1∏
k=1

(1− qk)n−k.

□
Example 5.18. Observe that

B3(q) = det

 1 1 1
1 1 1
1 1 1


q

= det

 1 q1/2 q4/2

q1/2 1 q1/2

q4/2 q1/2 1


= (1− q)2(1− q2) = 1− 2q + 2q3 − q4.

Let us check B4(q) = 1 − 3q + q2 + 4q3 − 2q4 − 2q5 − 2q6 + 4q7 + q8 − 3q9 + q10.
We can see this directly from Table 3. Indeed, our results verify this statistics as
follows:

B4(q) = det


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


q

= det


1 q1/2 q4/2 q9/2

q1/2 1 q1/2 q4/2

q4/2 q1/2 1 q1/2

q9/2 q4/2 q1/2 1


=

((1− q)2(1− q2))2

1− q
(1− q3)

= (1− q)3(1− q2)2(1− q3)

= 1− 3q + q2 + 4q3 − 2q4 − 2q5 − 2q6 + 4q7 + q8 − 3q9 + q10.
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Table 3. signed bigrassmannian statistics over S4

sign β sign β sign β sign β

1234 + 0 2134 − 1 3124 + 3 4123 − 6

1243 − 1 2143 + 2 3142 − 5 4132 + 7

1324 − 1 2314 + 3 3214 − 4 4213 + 7

1342 + 3 2341 − 6 3241 + 7 4231 − 9

1423 + 3 2413 − 5 3412 + 8 4312 − 9

1432 − 4 2431 + 7 3421 − 9 4321 + 10

6. Concluding remarks

In this article, we introduced a new directed graph structure (ASM graph) into
alternating sign matrices. This generalizes Bruhat graph whose edge relation is
defined by transpositions and length functions. The key idea was to consider
entries of corner sum matrices rather than entries of ASMs.
We established subsequent results of Drake-Gerrish-Skandera [6, 7] on equivalent
characterizations of Bruhat order in two ways; from permutations to ASMs; q-
analogs with respect to the bigrassmannian statistic β. As a by-product, we found
formulas for signed bigrassmannian statistic with a determinantal expression and
Dodgson’s condensation.
We end with several ideas for our subsequent research.

(1) Drake-Gerrish-Skandera proved in fact more [6, 7]; Bruhat order is equiv-
alent to the monomial nonnegativity (MNN) as well as the Schur nonneg-
ativity (SNN). Can we establish some similar results on such properties
from our viewpoints such as ASMs and the q-analog?

(2) Recall that we made use of a q-analog of the determinant
∑

w∈Sn
(−1)ℓ(w)xw

q

(with xij = 1) and Dodgson’s condensation to find the signed bigrassman-
nian statistic. We next wish to find the unsigned bigrassmannian statis-
tic; Reading [14] originally mentioned this problem. The natural idea is

to consider the permanent of the matrix (q(i−j)2/2). How can we evaluate
this?

(3) Recently, there are many references for research on bivariate permutation
statistics such asMahonian-Eulerian; see Skandera [16], for example. Find
the bivariate Mahonian-bigrassmannian statistics

∑
w∈Sn

tℓ(w)qβ(w).
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