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Part 1 with Matsumura, Sugimoto

little introduction
report our main theorem

Part 2 on my own

recent progress
suggest some ideas for future work



Kewords

Part 1 [type C]

quasi-sym. function
semistandard oscillating tableaux
Gessel, Assaf-Searles’ theorem

Part 2 [type A]

F -, Schur-positivity
quasi-crystal
crystal skeleton



Little history

Gessel 1984
decomposition of s– into qsym functions

Assaf-Searles 2017
improvement of Gessel’s idea

Choi-Kim-Lee 2024
introduction of semistandard
oscillating tableaux.
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x = (x1; x2; : : : ): variables.

Def
Let a = (a1; : : : ; am) 2 Nm. The monomial
qsym function for a is

Ma(x) =
X

x
a1
i1 ´ ´ ´x

am
im

with all (i1; : : : ; im) such that i1 < ´ ´ ´ < im.



For example,

M74(x) = x
7
1x
4
2 + x

7
1x
4
3 + ´ ´ ´+ x72x43 + ´ ´ ´ :

Below, a; b are weak compositions, – is
always a partition.



Def
b refines a if we can obtain b from a by
repeating “ split one entry to two adjacent
positive entries".

For example, a = (7; 4)

(1; 6; 4); (4; 3; 2; 2)

are refinements of a.



Def
Fundamental qsym function for a is

Fa(x) =
X

b2ref(a)
Mb(x)

where ref(a) = the set of all refinements of
a.

Example.

F22 = M22 +M211 +M112 +M1111



Let T be a standard tableaux of shape –.
The descent set of T is

Des(T ) = fi j i+ 1 is below i in Tg

If
Des(T ) = (a1; : : : ; am);

then

des(T ) = (a1; a1 + a2; : : : ; a1 + ´ ´ ´+ am):



Standardization of an SSYT T :
Give numbers all 1’s in T from left.
Next, give numbers all 2’s in T from left.
and so on. Finally, we get an ST, T st.

ex

T =
1 1 8

2 7
T st =

1 2 5

3 4

T1 ‰ T2 () T st1 = T
st
2

is an equivalent class. In particular,
standardization preserves descent.



Thm (Gessel, 1984)

s–(x) =
X

T2ST(–)
FdesT (x)

where ST(–) is the set of all STs of shape –.

Decompose a symmetric function to qsyms!



Our main theorem:
type-A-to-C-extension of Gessel’s theorem

type C tableaux?
P-side

King tableaux
Kashiwara-Nakashima tableaux

Q-side
OT
SSOT
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Def

An oscillating tableau (OT) is a
sequence of partitions with starting at ;, and
at each step, we add or delete one box.

0

B

B

B

B

@

;; ; ; ;

1

C

C

C

C

A



A skew shape is a difference of two
Young diagrams.



A skew shape is a horizontal strip if it
contains at most one box in each row.



Def
Let O = (Oj) be an OT of length n. Define d(O) as
the sequence

(1 » d1 » d20 » d2 » d30 » ´ ´ ´ » dk`1 » n` 1)

where d10 = 0 with:

Odi0 �Odi0+1 � ´ ´ ´ �Odi, Odi=Odi0 is a horizontal
strip and Odi �Odi+1 or Odi �Odi+1 but
Odi+1=Odi0 is not a horizontal strip.

Odi �Odi+1 � ´ ´ ´ �Od(i+1)0 and Odi=Od(i+1)0 is a
horizontal strip. Od(i+1)0 �Od(i+1)0+1 or
Od(i+1)0 �Od(i+1)0+1 but Odi=Od(i+1)0 is not.

Now define its descent

desO = (di ` di`1)1»i»k

with d0 = 0, dk = n.



Def (Choi-Kim-Lee)
A semistandard oscillating tableaux
(SSOT) of shape – is a sequence

S = (S1; S
02; S2; S

03; : : : ; S
0k; Sk)

of partitions such that:
Si « S 0i+1 and S 0i „ Si. These are
horizontal strips.
Sk = –.

Denote by SSOTk(–) the set of all such.



step 1 addition

step 2 deletion

step 2 addition

step 3 deletion



step 1 addition

1 1

step 2 deletion

2

step 2 addition

2 2

2

step 3 deletion

3

3



Identify this

S =
1 122 23

23
:



standardizaiton of SSOT
step 1: Give numbers to added boxes from
left.
step 2 deletion: Give numbers to deleted
boxes from right.
step 2 addition: Give numbers to added
boxes from left.
and so on.



S =
1 122 23

23
; Sst =

1 246 38

57
:

Def
S1 ‰ S2 () Sst1 = S

st
2

This is an equivalent relation on all
SSOTs. This preserves des.



weight monomial

xS =
Y

xi2S
xi:

Def
SSOT function

ss–(x) =
X

S

xS:

The sum ranges over all SSOTs of shape –.



Main Thm 1 (2025+)

ss–(x) =
X

T2OT(–)
FdesT (x):

In particular, this is F -positive.

Idea of proof.
Sum up all weights for standard equivalent
classes with each representative T 2 OT (–).



Rmk
representation-theoretic approaches on this
topic.
Sundaram
Naito-Sagaki
Rubey-Sagan-Westbury
Heo-Kwon



Main Thm 2
ss–(x) =

X

˛0even

c‌˛–s‌(x):

In particular, this is Schur positive and hence
symmetric.

Rmk
Watanabe pointed out that we can interpret
our results in terms of reps. of AII quantum
symmetric pair.
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Part 2

Back to type A.

X = (x1; x2; : : : )

Classical Problem
Let g(X) 2 C[[X]] be symmetric and
F -positive. Find partitions — and c— 2 N
such that

g(X) =
X

—
c—s—:



Simpler problem
When is an F -positive function g(X) a
single Schur?

2010’s: Assaf, Roberts,
Egge-Loehr-Warrington gave a partial
answer.

2023-: Maas-Gariépy,
Brauner-Corteel-Daugherty-Schilling started
the brand new research with crystals.
quasi-crystal
crystal skeleton



Consider a crystal graph on

B(–) = (SSYT(–); ei; fi;!):

Fact
B(–) is connected.



Def (Maas-Gariépy)
A quasi-crystal is an equivalent class of
standardization in B(–).

For now, this is just a set. However, there
is a reason to call it a quasi-crystal.

Fact
For each T 2 ST (–), a quasi-crystal [T ]
forms a connected subgraph in B(–).



Example

B3
„ «

splits into two quasi-crystals.

1 1

2
!̀ 1 1

3
!̀ 1 2

3
!̀ 2 2

3

1 2

2
!̀ 1 3

2
!̀ 1 3

3
!̀ 2 3

3

Each edge comes from some fi.



Thm
The generating function of a quasi-crystal is
a fundamental quasi-sym function.

Consequently, B(–) splits into a union of
quasi-crystals.
This gives a deeper understanding for

s– =
X

T2ST (–)
Fdes(T ):



LR rule revisited

It is thus possible to expand everything

s–s— =
X

c‌–—s‌

into F¸’s.
What then can we say about F¸F˛? It is
indeed F -positive.



Thm (Assaf-Searles 2017)
For all strong compositions ¸; ˛,

F¸F˛ =
X

C
‚
¸˛F‚; 9C‚¸˛ 2 Z–0:

Rmk
This is a shape-free discussion!



That is, possibly 9 distinct STs of same
shape with same descent such as

1 2 6
3 4
5

;
1 2 4
3 6
5

:

Thus,
F –¸ =

X

T2ST (–);desT=¸
F¸

is the appropriate shape-dependent
grouping in a single B(–).



Write F –¸ = f–¸F¸ with f–¸ 2 Z–0.

Ob (quasi LR)

s–s— =
X

„

c‌–—f‌‚
«

F‚

This is the refinement of LR rule in this
context.

Next direction
Understand numbers (f–¸).

This is quasi-Kostka numbers. Only few
authors have mentioned this before.
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Def (Maas-Gariépy)
A crystal skeleton ST (–) for – is a
quotient set B(–)= ‰st.

Def (K.)
A skeleton polynomial for –:

Sk–(x) =
X

¸
f–¸x

¸:

(Think this as generating function of ST (–)
wrt. des)

cf.
s–(X) =

X

¸
f–¸F¸(X):



example

1 2 3
4 5

1 2 4
3 5

1 3 4
2 5

1 3 5
2 4

1 2 5
3 4

These 5 STs correspond to

Sk (x) = x32 + x221 + x131 + x122 + x23

where
x¸ = x

¸1
1 x

¸2
2 ´ ´ ´



Sk–(x) is not really symmetric, but “close
to".
For last two months, I studied those
polynomials:
inner crystal symmetry
skeleton RS correspondence
Lusztig symmetry
Young Branching rule?



Let

l = minf‘(desT ) j T 2 ST (–)g:

Thm (BCDS 2025)
A crystal skeleton graph ST (–) (detail
omitted) contains Bl(–) as a subgraph. Call
this the inner crystal of B(–).

Bl(–) „ ST (–) „ B(–)



B3
„ «

consists of two quasi-crystals.

1 1

2
!̀ 1 1

3
!̀ 1 2

3
!̀ 2 2

3

1 2

2
!̀ 1 3

2
!̀ 1 3

3
!̀ 2 3

3

Red parts form the inner crystal.

1 2

3
!̀ 1 3

2

0

B

B

@

‰= B2
0

B

B

@

1

C

C

A

1

C

C

A



Thm (K.)
Notation as above, we have

Sk–(x1; : : : ; xl; 0; : : : ; 0) = s–(x):

In particular, this is symmetric as an
l-variable polynomial.



Robinson correspondence

Sn !̀ G

–‘n
ST (–)ˆ ST (–)

w 7! (P (w); Q(w))

is reduced to
skeleton Robinson correspondence
X

–‘n
Sk–(x)Sk–(y) =

X

w2Sn
xdesP (w)ydesQ(w):

In particular, xi = yi = 1 recovers
X

–

f2– = n!:



RS correspondence

Nn !̀ G

–‘n
SSYT(–)ˆ ST (–)

w 7! (P (w); Q(w))

is reduced to skeleton RS correspondence:
X

–‘n
s–(X)Sk–(y) =

X

w2Sn
FdesP (w)(X)y

desQ(w):



Lusztig symmetry

For ¸ = (¸1; ¸2; : : : ; ¸m) 2 Nm, let

¸˜ = (¸m; ¸m`1; : : : ; ¸1):

Thm (K.)
f–¸ = f–¸˜. In other words,

Sk–(x) =
X

T2ST (–)
xdesT =

X

T2ST (–)
x(desT )

˜

Idea of a proof:evacuation.



Fact (Young Branching rule)

ST (–) =
M

–`�–
ST (–`):

However,

Sk–(x) =
X

–`�–
Sk–`(x)

is not quite true, but close.

idea
Express this branching with algebra of qsyms,
Young lattice and Up/Down operators.



Summary

Part 1
SSOT
type-A-to-C-extension of Gessel,
Assaf-Searles’ theorem

Part 2
F -, Schur-positivity
quasi-crystals
crystal skeleton
skeleton polynomials



Thanks!
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