An extension of qsym functions by Gessel and Assaf-Searles

Masato Kobayashi

Kanagawa Univ.

With Tomoo Matsumura Shogo Sugimoto (ICU)

Oct. 21, 2025

Workshop

Representation theory, Algebraic combinatorics, and related topics

2026 May-June, at Kyoto RIMS.

You are always welcome.

- Introduction
- 2 Part 1-1 qsym functions
- Part 1-2: Main theorem
- Part 2-1: Quasi-crystal
- Part 2-2: crystal skeleton

Part 1 with Matsumura, Sugimoto

- little introduction
- report our main theorem

Part 2 on my own

- recent progress
- suggest some ideas for future work

Kewords

Part 1 [type C]

- quasi-sym. function
- semistandard oscillating tableaux
- Gessel, Assaf-Searles' theorem

Part 2 [type A]

- F-, Schur-positivity
- quasi-crystal
- crystal skeleton

Little history

- Gessel 1984 decomposition of s_{λ} into qsym functions
- Assaf-Searles 2017 improvement of Gessel's idea
- Choi-Kim-Lee 2024
 introduction of semistandard oscillating tableaux.

- Introduction
- Part 1-1 qsym functions
- Part 1-2: Main theorem
- Part 2-1: Quasi-crystal
- Part 2-2: crystal skeleton

 $x = (x_1, x_2, \dots)$: variables.

Def

Let $a = (a_1, \ldots, a_m) \in \mathbb{N}^m$. The monomial gsym function for a is

$$extit{M}_a(x) = \sum x_{i_1}^{a_1} \cdots x_{i_m}^{a_m}$$

with all (i_1, \ldots, i_m) such that $i_1 < \cdots < i_m$.

For example,

$$M_{74}(x) = x_1^7 x_2^4 + x_1^7 x_3^4 + \cdots + x_2^7 x_3^4 + \cdots$$

Below, a, b are weak compositions, λ is always a partition.

Def

b refines a if we can obtain b from a by repeating "split one entry to two adjacent positive entries".

For example,
$$a = (7, 4)$$

(1, 6, 4), (4, 3, 2, 2)

are refinements of a.

Def

Fundamental qsym function for a is

$$F_a(x) = \sum_{b \in \operatorname{ref}(a)} M_b(x)$$

where ref(a) = the set of all refinements of a.

Example.

$$F_{22} = M_{22} + M_{211} + M_{112} + M_{1111}$$

Let T be a standard tableaux of shape λ . The **descent** set of T is

$$Des(T) = \{i \mid i+1 \text{ is below } i \text{ in } T\}$$

then

$$\mathsf{Des}(T) = (a_1, \ldots, a_m),$$

· (-)

$$des(T) = (a_1, a_1 + a_2, ..., a_1 + \cdots + a_m).$$

Standardization of an SSYT T: Give numbers all 1's in T from left. Next, give numbers all 2's in T from left. and so on. Finally, we get an ST, $T^{\rm st}$.

$$T = \begin{array}{|c|c|c|}\hline 1 & 1 & 8 \\ \hline 2 & 7 & & T^{st} = \begin{array}{|c|c|c|}\hline 1 & 2 & 5 \\ \hline 3 & 4 & & \\ \hline \end{array}$$

$$T_1 \sim T_2 \iff T_1^{\text{st}} = T_2^{\text{st}}$$

is an equivalent class. In particular, standardization preserves descent.

Thm (Gessel, 1984)

$$s_{\lambda}(x) = \sum\limits_{T \in \mathsf{ST}(\lambda)} \mathsf{F}_{\mathsf{des}T}(x)$$

where $ST(\lambda)$ is the set of all STs of shape λ .

Decompose a symmetric function to qsyms!

Our main theorem: type-A-to-C-extension of Gessel's theorem

type C tableaux?

P-side

- King tableaux
- Kashiwara-Nakashima tableaux

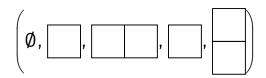
Q-side

- OT
- SSOT

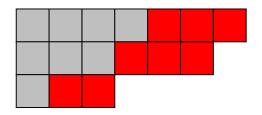
- Introduction
- Part 1-1 qsym functions
- Part 1-2: Main theorem
- Part 2-1: Quasi-crystal
- Part 2-2: crystal skeleton

Def

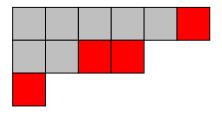
An oscillating tableau (OT) is a sequence of partitions with starting at \emptyset , and at each step, we add or delete one box.



A skew shape is a difference of two Young diagrams.



A skew shape is a horizontal strip if it contains at most one box in each row.



Def

Let $O = (O_j)$ be an OT of length n. Define d(O) as the sequence

$$(1 \le d_1 \le d_{2'} \le d_2 \le d_{3'} \le \cdots \le d_{k-1} \le n-1)$$

where $d_{1} = 0$ with:

- $O_{d_{i'}} \triangleleft O_{d_{i'}+1} \triangleleft \cdots \triangleleft O_{d_i}$, $O_{d_i}/O_{d_{i'}}$ is a horizontal strip and $O_{d_i} \triangleright O_{d_i+1}$ or $O_{d_i} \triangleleft O_{d_i+1}$ but $O_{d_{i+1}}/O_{d_{i'}}$ is not a horizontal strip.
- $O_{d_i} \triangleright O_{d_i+1} \triangleright \cdots \triangleright O_{d_{(i+1)'}}$ and $O_{d_i}/O_{d_{(i+1)'}}$ is a horizontal strip. $O_{d_{(i+1)'}} \triangleleft O_{d_{(i+1)'}+1}$ or $O_{d_{(i+1)'}} \triangleright O_{d_{(i+1)'}+1}$ but $O_{d_i}/O_{d_{(i+1)'}}$ is not.

Now define its descent

$$\operatorname{des} O = (d_i - d_{i-1})_{1 \le i \le k}$$

Def (Choi-Kim-Lee)

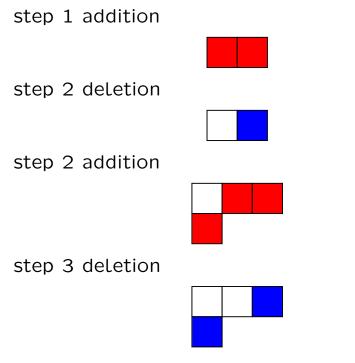
A semistandard oscillating tableaux (SSOT) of shape λ is a sequence

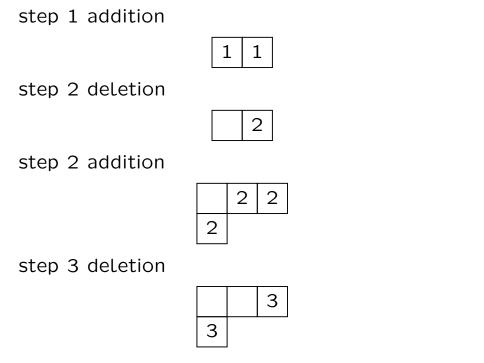
$$S = (S^1, S^{'2}, S^2, S^{'3}, \dots, S^{'k}, S^k)$$

of partitions such that:

- $S^i \supseteq S^{'i+1}$ and $S^{'i} \subseteq S^i$. These are horizontal strips.
 - $S^k = \lambda$.

Denote by $SSOT_k(\lambda)$ the set of all such.





Identify this

	_	1	122	23
_	_			

standardizaiton of SSOT step 1: Give numbers to added boxes from left.

step 2 deletion: Give numbers to deleted boxes from right.

step 2 addition: Give numbers to added boxes from left.

and so on.

Def

$$S_1 \sim S_2 \iff S_1^{\rm st} = S_2^{\rm st}$$

This is an equivalent relation on all SSOTs. This preserves des.

weight monomial

$$x^{\mathcal{S}} = \prod_{x_i \in \mathcal{S}} x_i$$
.

Def

SSOT function

$$ss_{\lambda}(x) = \sum_{S} x^{S}$$
.

The sum ranges over all SSOTs of shape λ .

Main Thm 1 (2025+)

$$ss_{\lambda}(x) = \sum_{T \in \mathsf{OT}(\lambda)} \mathsf{F}_{\mathsf{des}T}(x).$$

In particular, this is F-positive.

Idea of proof.

Sum up all weights for standard equivalent classes with each representative $T \in OT(\lambda)$.

Rmk

representation-theoretic approaches on this topic.

- Sundaram
- Naito-Sagaki
- Rubey-Sagan-Westbury
- Heo-Kwon

Main Thm 2

$$ss_{\lambda}(x) = \sum\limits_{eta' even} c^{
u}_{eta\lambda} s_{
u}(x).$$

In particular, this is Schur positive and hence **symmetric**.

Rmk

Watanabe pointed out that we can interpret our results in terms of reps. of A_{II} quantum symmetric pair.

- Introduction
- Part 1-1 qsym functions
- Part 1-2: Main theorem
- Part 2-1: Quasi-crystal
- Part 2-2: crystal skeleton

Part 2

Back to type A.

$$X=(x_1,x_2,\dots)$$

Classical Problem

Let $g(X) \in \mathbf{C}[[X]]$ be symmetric and F-positive. Find partitions μ and $c_{\mu} \in \mathbf{N}$ such that

$$g(X) = \sum_{\mu} c_{\mu} s_{\mu}.$$

Simpler problem

When is an F-positive function g(X) a single Schur?

2010's: Assaf, Roberts, Egge-Loehr-Warrington gave a partial answer.

2023-: Maas-Gariépy, Brauner-Corteel-Daugherty-Schilling started the brand new research with **crystals**.

- quasi-crystal
- crystal skeleton

Consider a crystal graph on

$$\mathbf{B}(\lambda) = (\mathsf{SSYT}(\lambda), e_i, f_i, \rightarrow).$$

Fact

 $B(\lambda)$ is connected.

Def (Maas-Gariépy)

A quasi-crystal is an equivalent class of standardization in $\mathbf{B}(\lambda)$.

For now, this is just a set. However, there is a reason to call it a quasi-crystal.

Fact

For each $T \in ST(\lambda)$, a quasi-crystal [T] forms a connected subgraph in $\mathbf{B}(\lambda)$.

Example

 \mathbf{B}_3 (\square) splits into two quasi-crystals.

$$\begin{array}{c|ccccc}
\hline
1 & 1 & \\
\hline
2 & \\
\hline
\end{array}$$

$$\begin{array}{c|cccccccc}
\hline
1 & 2 & \\
\hline
3 & \\
\hline
\end{array}$$

$$\begin{array}{c|ccccccc}
\hline
1 & 2 & \\
\hline
2 & \\
\hline
\end{array}$$

$$\begin{array}{c|cccccc}
\hline
1 & 3 & \\
\hline
2 & \\
\hline
\end{array}$$

$$\begin{array}{c|ccccc}
\hline
1 & 3 & \\
\hline
2 & \\
\hline
\end{array}$$

$$\begin{array}{c|ccccccc}
\hline
1 & 3 & \\
\hline
2 & \\
\hline
\end{array}$$

$$\begin{array}{c|cccccccc}
\hline
3 & \\
\hline
\end{array}$$

Each edge comes from some f_i .

Thm

The generating function of a **quasi**-crystal is a fundamental **quasi**-sym function.

Consequently, $\mathbf{B}(\lambda)$ splits into a union of quasi-crystals.

This gives a deeper understanding for

$$s_{\lambda} = \sum_{T \in ST(\lambda)} F_{des(T)}.$$

LR rule revisited

It is thus possible to expand everything

$$s_{\lambda}s_{\mu}=\sum c_{\lambda\mu}^{\nu}s_{\nu}$$

into F_{α} 's.

What then can we say about $F_{\alpha}F_{\beta}$? It is indeed F-positive.

Thm (Assaf-Searles 2017)

For all strong compositions α, β ,

$$F_{\alpha}F_{\beta} = \sum C_{\alpha\beta}^{\gamma}F_{\gamma}, \quad \exists C_{\alpha\beta}^{\gamma} \in \mathbf{Z}_{\geq 0}.$$

Rmk

This is a **shape-free** discussion!

That is, possibly \exists distinct STs of same shape with same descent such as

Thus,

$$F_{\alpha}^{\lambda} = \sum_{T \in ST(\lambda), \text{des}T = \alpha} F_{\alpha}$$

is the appropriate **shape-dependent** grouping in a single $B(\lambda)$.

Write $F_{\alpha}^{\lambda} = f_{\lambda\alpha}F_{\alpha}$ with $f_{\lambda\alpha} \in \mathbf{Z}_{>0}$.

Ob (quasi LR)

$$s_{\lambda}s_{\mu}=\sum\left(c_{\lambda\mu}^{
u}f_{
u\gamma}
ight)F_{\gamma}$$

This is the refinement of LR rule in this context.

Next direction

Understand numbers $(f_{\lambda\alpha})$.

This is **quasi-Kostka numbers**. Only few authors have mentioned this before.

- Introduction
- Part 1-1 qsym functions
- Part 1-2: Main theorem
- Part 2-1: Quasi-crystal
- Part 2-2: crystal skeleton

Def (Maas-Gariépy)

A crystal skeleton $ST(\lambda)$ for λ is a quotient set $\mathbf{B}(\lambda)/\sim_{st}$.

Def (K.)

A **skeleton polynomial** for λ :

$$\operatorname{Sk}_{\lambda}(x) = \sum_{\alpha} f_{\lambda \alpha} x^{\alpha}.$$

(Think this as generating function of $ST(\lambda)$ wrt. des)

cf.

$$s_{\lambda}(X) = \sum_{\alpha} f_{\lambda \alpha} F_{\alpha}(X).$$

example

These 5 STs correspond to

$${\rm Sk}_{\rm phi}(x)=x^{\rm 32}+x^{\rm 221}+x^{\rm 131}+x^{\rm 122}+x^{\rm 23}$$

where

$$x^{\alpha}=x_1^{\alpha_1}x_2^{\alpha_2}\cdots$$

 $Sk_{\lambda}(x)$ is not really symmetric, but "close to".

For last two months, I studied those polynomials:

- inner crystal symmetry
- skeleton RS correspondence
- Lusztig symmetry
- Young Branching rule?

Let

$$l = \min\{\ell(\text{des}T) \mid T \in ST(\lambda)\}.$$

Thm (BCDS 2025)

A crystal skeleton graph $ST(\lambda)$ (detail omitted) contains $\mathbf{B}_l(\lambda)$ as a subgraph. Call this the **inner crystal** of $\mathbf{B}(\lambda)$.

$$B_l(\lambda) \subseteq ST(\lambda) \subseteq B(\lambda)$$

 \mathbf{B}_3 (\square) consists of two quasi-crystals.

Red parts form the inner crystal.

$$\begin{array}{c|c} 1 & 2 \\ \hline 3 & \longrightarrow & 2 \end{array} \qquad \left(\cong \mathbf{B}_2 \left(\begin{array}{c} \\ \end{array}\right)\right)$$

Thm (K.)

Notation as above, we have

$$\mathsf{Sk}_{\lambda}(x_1,\ldots,x_l,0,\ldots,0)=s_{\lambda}(x).$$

In particular, this is symmetric as an *l*-variable polynomial.

Robinson correspondence

$$S_n \longrightarrow \bigsqcup_{\lambda \vdash n} ST(\lambda) \times ST(\lambda)$$

$$w \mapsto (P(w), Q(w))$$

is reduced to skeleton Robinson correspondence

$$\sum\limits_{\lambda \vdash n} \mathsf{Sk}_{\lambda}(x) \mathsf{Sk}_{\lambda}(y) = \sum\limits_{w \in S_n} x^{\mathsf{des}P(w)} y^{\mathsf{des}Q(w)}.$$

In particular, $x_i = y_i = 1$ recovers

$$\sum_{\lambda} f_{\lambda}^2 = n!.$$

RS correspondence

$$\mathbf{N}^n \longrightarrow \bigsqcup_{\lambda \vdash n} \mathsf{SSYT}(\lambda) \times \mathsf{ST}(\lambda)$$

$$w \mapsto (P(w), Q(w))$$

is reduced to **skeleton RS correspondence**:

$$\sum_{\lambda} s_{\lambda}(X) \operatorname{Sk}_{\lambda}(y) = \sum_{\sigma \in \sigma} F_{\operatorname{des}P(w)}(X) y^{\operatorname{des}Q(w)}.$$

Lusztig symmetry

For
$$\alpha=(\alpha_1,\alpha_2,\ldots,\alpha_m)\in \mathbf{N}^m$$
, let $lpha^*=(lpha_m,lpha_{m-1},\ldots,lpha_1).$

Thm (K.)

$$f_{\lambda\alpha}=f_{\lambda\alpha^*}$$
. In other words,

$$\mathsf{Sk}_{\lambda}(x) = \sum\limits_{T \in ST(\lambda)} x^{\mathsf{des}T} = \sum\limits_{T \in ST(\lambda)} x^{(\mathsf{des}T)^*}$$

Idea of a proof:evacuation.

Fact (Young Branching rule)

$$ST(\lambda) = \bigoplus_{\lambda^- \leq \lambda} ST(\lambda^-).$$

However,

$$\mathsf{Sk}_\lambda(x) = \sum\limits_{\lambda^- \lhd \lambda} \mathsf{Sk}_{\lambda^-}(x)$$

is **not** quite true, but close.

idea

Express this branching with algebra of qsyms, Young lattice and Up/Down operators.

Summary

Part 1

- SSOT
- type-A-to-C-extension of Gessel, Assaf-Searles' theorem

Part 2

- F-, Schur-positivity
- quasi-crystals
- crystal skeleton
- skeleton polynomials

Thanks!