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Abstract. As an application of linear algebra for enumerative combinatorics,
we introduce two new ideas, signed bigrassmannian polynomials and bigrass-
mannian determinant. First, a signed bigrassmannian polynomial is a variant
of the statistic given by the number of bigrassmannian permutations below a
permutation in Bruhat order as Reading suggested (2002) and afterward the
author developed (2011). Second, bigrassmannian determinant is a q-analog
of the determinant with respect to our statistic. It plays a key role for a de-
terminantal expression of those polynomials. We further show that bigrassman-
nian determinant satisfies weighted condensation as a generalization of Dodgson,
Jacobi-Desnanot and Robbins-Rumsey (1986).

1. Introduction

The purpose of this article is to introduce two new ideas, signed bigrassmannian
polynomials and bigrassmannian determinant as an application of linear algebra
for enumerative combinatorics. We begin with explaining our motivation.

1.1. Reading’s problem (2002): bigrassmannian statistic. Permutation sta-
tistics has been of great importance in enumerative combinatorics; in particular,
Mahonian and Eulerian statistics, such as inversions and descent numbers, are fun-
damental in the theory. Here what we deal with is a certain new statistic β, which
we call bigrassmannian statistic. Reading [11] suggested the following problem:

Problem 1.1. Let β(w) be the number of join-irreducible (equivalently, bigrass-
mannian) permutations weakly below a permutation w in Bruhat order. Find its
generating function

∑
w∈Sn

qβ(w).

He gave examples of such generating functions for smaller n’s:

1 + q (S2)
1 + 2q + 2q3 + q4 (S3)

1 + 3q + q2 + 4q3 + 2q4 + 2q5 + 2q6 + 4q7 + q8 + 3q9 + q10 (S4)
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Unfortunately, we failed to find any patterns of these coefficients nor factors of
such polynomials. Instead, in this article, we study the following signed statistic
(as signed Mahonian or signed Eulerian statistics):

Bn(q) =
∑
w∈Sn

(−1)ℓ(w)qβ(w)

where ℓ(w) is the number of inversions; let us call {Bn(q) | n = 1, 2, 3, . . . } signed
bigrassmannian polynomials. Fortunately, we could find satisfactory descriptions
of such polynomials. It turned out that it is also worthwhile to study these poly-
nomials with a connection to tournaments and Vandermonde determinant. Since
each Bn(q) is a signed sum over the symmetric group, it is natural to come to this
idea:

Main idea. Use the determinant to find Bn(q).

The determinant is usually a function which outputs a scalar. For our purpose
to find Bn(q), we introduce its q-analog (Section 4); we call it bigrassmannian
determinant.
As main results, we will prove three theorems:

• Theorem 3.12: a factorization of Bn(q).
• Theorem 4.4: a determinantal expression of Bn(q).
• Theorem 4.6: weighted condensation for bigrassmannian determinant.

In addition, we observe a corollary after each of these theorems.

1.2. Overview. In Section 2, we review some classic results on tournaments and
Vandermonde determinant as mentioned above. These facts will play a funda-
mental role in the sequel. In Section 3, we introduce β-statistic for tournaments
as well as permutations. Then we find factors of Bn(q) using weighted Vander-
monde determinant. Section 4 continues to study Bn(q) (from a little different
aspect); we give a definition of bigrassmannian determinant for square matrices
as a q-analog of the original one. This new idea leads to a determinantal expres-
sion of Bn(q) as we shall see. Further, we prove that bigrassmannian determinant
satisfies weighted condensation. It slightly generalizes the construction of Robbins-
Rumsey’s λ-determinants [13]. We end with some comments for future work in
Section 5.

2. Tournaments and Vandermonde determinant

We begin with combinatorics of tournaments and Vandermonde determinant.

2.1. Tournaments.

Definition 2.1. A tournament is a complete digraph with vertices labeled by
1, 2, . . . , n. We denote by Tn the set of all tournaments.
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Example 2.2. Here are eight elements in T3:
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Since there are two choices of direction for each pair (i, j) such that 1 ≤ i < j ≤ n,
we have |Tn| = 2n(n−1)/2 in total.

In what follows, the letter G means an element of Tn unless otherwise specified
(G is for Graph).

Definition 2.3. An inversion of G is a directed edge j → i with j > i. The length
ℓ(G) is the number of inversions of G. An upset of an inversion j → i is a vertex
j. Define ωG(j) to be the outdegree of j.

2.2. Cycle and transitivity. Below, we just say a “cycle” to mean a 3-cycle
(which is the only kind of cycles we treat).

Definition 2.4. Let (i, j, k) be a triple such that i < j < k. Suppose i, j, k
form a cycle in G. Say the cycle is positive if k → j → i → k; it is negative if
i → j → k → i. Besides, say G is transitive if it does not contain any cycles.

Observe that precisely six tournaments in Example 2.2 are transitive.

2.3. Permutations. By Sn we mean the symmetric group on [n] = {1, 2, . . . , n}.
The set of inversions of w ∈ Sn is

N(w) = {(i, j) ∈ [n]× [n] | i < j and w−1(i) > w−1(j)}.
Define the length ℓ(w) to be |N(w)|. Let G(w) be the tournament such that j → i
is an inversion of G(w) ⇐⇒ (i, j) ∈ N(w). Say the tournament G(w) is induced
from a permutation w ∈ Sn. Let us make sure the following:

Fact 2.5. Bressoud [2, Exercise 2.4.2] There is a bijection between Sn and transi-
tive tournaments in Tn.

Thanks to this result, we naturally view Sn ⊆ Tn in what follows. In particular,
ℓ(G(w)) = ℓ(w).

2.4. Vandermonde determinant.

Definition 2.6. Let x1, . . . , xn and λ be commutative variables. The n-th Van-
dermond λ-determinant is

Vn(x, λ) =
∏

1≤i<j≤n

(xi + λxj).
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This is a polynomial in xi’s (x means such variables for short) and λ. We must
explain why we used the word “determinant”: Following Robbins-Rumsey [13], we
recursively define a determinant-like function | |λ for square matrices as follows.
First, we formally define | |λ for the 0 by 0 matrix to be 1 and for a 1 by 1 matrix
(a11) to be a11 itself. Now let A be an n by n matrix for n ≥ 2. Let Aj

i denote the
matrix that remains when we delete the i-th row and j-th column of A. If we wish
to delete more than one row (column), the numbers of the deleted rows (columns)
are listed as subscripts (superscripts). The λ-determinant of A is

|A|λ =
|A1

1|λ|An
n|λ + λ|A1

n|λ|An
1 |λ

|A1n
1n|λ

(a rational function of λ)

provided | |λ of all minors of A are nonzero. In particular, λ = −1 recovers the
original determinant (going back to Dodgson and Desnanot-Jacobi). From this
point of view, we can understand Vn(x, λ) as the λ-determinant of the Vander-
monde matrix: Vn(x, λ) = |xn−i

j |λ.

Definition 2.7. The Vandermonde monomial for G is ρ(G) = λℓ(G)
∏

j∈[n] x
ω(j)
j .

Proposition 2.8. We have

Vn(x, λ) =
∑
G∈Tn

ρ(G).

Proof. To a tournament G, assign a monomial with the choices of xi or λxj from
each factor of

∏
i<j(xi + λxj). Then λ in the monomial counts inversions and xj

records the outdegree.
□

Now, split the sum into two parts, transitive or not:∑
G∈Tn

ρ(G) =
∑
G∈Sn

ρ(G) +
∑

G∈Tn\Sn

ρ(G).

Fact 2.9. ∑
G∈Tn\Sn

ρ(G)

∣∣∣∣∣∣
λ=−1

= 0.

Proof. See Bressoud [2, Exercise 2.4.4]. □

3. Signed bigrassmannian statistic

3.1. Bigrassmannian statistic.

Definition 3.1. Define the bigrassmannian statistic for a tournament G as

β(G) =
∑
j→i
j>i

(j − i).
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Table 1 shows this (and inversion) statistic over S4.

Remark 3.2. This statistic is named after the bigrassmannian permutations ; say
w ∈ Sn is bigrassmannian if there exists a unique pair (i, j) ∈ [n−1]× [n−1] such
that w−1(i) > w−1(i+1) and w(j) > w(j+1). We refer to Lascoux-Schützenberger
[10], Geck-Kim [7], Reading [11] and the author [9] for combinatorics of these
permutations.

Define Bruhat order ≤ on Sn as the transitive closure of the following binary
relation: v → w meaning w = vtij, for some i < j, tij a transposition and
ℓ(v) < ℓ(w). Let B(w) = {u bigrassmannian | u ≤ w} and set β(w) = |B(w)|.
The author [9] showed that

β(w) =
∑

(i,j)∈N(w)

(j − i).

Thus, we can compute β simply as weighted enumeration of inversions:

β(3412) = (3− 1) + (3− 2) + (4− 1) + (4− 2) = 8,

for example (Figure 1). From this point of view, our definition above is a natural
extension of β for tournaments. This statistic implicitly appeared also in the
Gessel-Viennot’s lattice path counting context [2, Theorem 3.7] as the quantity∑n

i=1 i(i− w(i)):

Proposition 3.3. For each w ∈ Sn, we have

[ 1 ] β(w) =
∑n

i=1(i− w(i))2/2 =
∑n

i=1 i(i− w(i)).
[ 2 ] β(w) = β(w−1).

Proof. (1) See [9] for the first equality. It follows that

β(w) =
1

2

n∑
i=1

(i− w(i))2 =
1

2

n∑
i=1

(
i2 − 2iw(i) + w(i)2

)
=

n∑
i=1

i(i− w(i)).

Table 1. statistics of ℓ and β over S4

ℓ β ℓ β ℓ β ℓ β

1234 0 0 2134 1 1 3124 2 3 4123 3 6

1243 1 1 2143 2 2 3142 3 5 4132 4 7

1324 1 1 2314 2 3 3214 3 4 4213 4 7

1342 2 3 2341 3 6 3241 4 7 4231 5 9

1423 2 3 2413 3 5 3412 4 8 4312 5 9

1432 3 4 2431 4 7 3421 5 9 4321 6 10



6 M. KOBAYASHI

Figure 1. Bruhat order of bigrassmannian permutation in S4
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Next, (2) follows from the facts that (a) u 7→ u−1 is an order-preserving automor-
phism in Bruhat order on Sn, (b) u is bigrassmannian ⇐⇒ so is u−1; we do
not go into details here because the proof is not so important for our discussions
below. □

Definition 3.4. Let x1, . . . , xn, λ and q be commutative variables. The weighted

Vandermonde monomial for G is χ(G) = λℓ(G)qβ(w)
∏

j∈[n] x
ω(j)
j .

Definition 3.5. The n-th weighted Vandermonde determinant is

Vn(x, λ, q) =
∏

1≤i<j≤n

(xi + λqj−ixj).

Example 3.6.

V3(x, λ, q) = (x1 + λqx2)(x1 + λq2x3)(x2 + λqx3)

= x2
1x2 + λqx1x

2
2 + λqx2

1x3 + (λ2 + λ)q2x1x2x3

+ λ2q3x2
2x3 + λ2q3x1x

2
3 + λ3q4x2x

2
3.

Proposition 3.7. We have

Vn(x, λ, q) =
∑
G∈Tn

χ(G).

Proof. The idea is similar to Proposition 2.8. □

Lemma 3.8. ∑
G∈Tn\Sn

χ(G)

∣∣∣∣∣∣
x1=···=xn=1,λ=−1

= 0.

To prove this lemma, we need a further definition and proposition.
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Definition 3.9. For i < j < k, define a map Cijk : Tn → Tn as follows: if i, j, k
form a cycle in G, then Cijk(G) is the tournament with all three edges in the cycle
reversed and all other edges unchanged. If i, j, k do not form a cycle in G, then
simply let Cijk(G) = G.

Observe that Cijk is an involution.

Proposition 3.10. Let i < j < k. If i, j, k form a cycle in G, then ℓ(Cijk(G)) ∈
{ℓ(G)− 1, ℓ(G) + 1} and β(Cijk(G)) = β(G).

Proof. A positive cycle contains two inversions whereas a negative cycle contains
one. The map Cijk interchanges these so that lengths differ by one. However, β is
invariant because of the equality k − i = (k − j) + (j − i). □

Proof of Lemma 3.8. Consider the lexicographic order on {(i, j, k) ∈ [n]3 | i < j <
k}. We will construct a perfect matching on the set Tn \ Sn. First, choose all
tournaments G from Tn such that (1, 2, 3) is a cycle in G. It is either positive
or negative; hence G ↔ C123(G) gives a matching. Next, choose all tournaments
H from the remaining tournaments such that (1, 2, 4) is a cycle in H. Again,
H ↔ C124(H) gives a matching. Continue this procedure up to (n − 2, n − 1, n).
We certainly exhausted all tournaments in Tn \ Sn with the perfect matching
constructed. As shown above, each pair has lengths of opposite parity and the
same β. Thus x1 = · · · = xn = 1 and λ = −1 yield zero. □

3.2. Signed bigrassmannian polynomials.

Definition 3.11. Let n be a positive integer. The n-th signed bigrassmannian
polynomial is

Bn(q) =
∑
w∈Sn

(−1)ℓ(w)qβ(w).

Theorem 3.12. For all n ≥ 1, we have

Bn(q) =
n−1∏
k=1

(1− qk)n−k.

Proof. As before, split Vn(x, λ, q) into two parts:∏
1≤i<j≤n

(xi + λqj−ixj) = Vn(x, λ, q) =
∑
G∈Sn

χ(G) +
∑

G∈Tn\Sn

χ(G).

With x1 = · · · = xn = 1 and λ = −1, the second sum vanishes as shown in
Lemma 3.8. As a result, we obtain∏

1≤i<j≤n

(1− qj−i) =
∑
w∈Sn

(−1)ℓ(w)qβ(w)
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or

Bn(q) =
n−1∏
k=1

(1− qk)n−k.

□

Corollary 3.13. For n ≥ 3, we have∑
w∈Sn

(−1)ℓ(w)β(w) = 0.

In other words, the β-statistic is sign-balanced.

Proof. Note that Bn(q) has a factor (1 − q)n−1 with n − 1 ≥ 2. Differentiate it
once and let q = 1. Then we get zero, as required. □

Example 3.14. (cf. Reading’s examples in Introduction)

B2(q) = 1− q,

B3(q) = (1− q)2(1− q2) = 1− 2q + 2q3 − q4,

B4(q) = (1− q)3(1− q2)2(1− q3)

= 1− 3q + q2 + 4q3 − 2q4 − 2q5 − 2q6 + 4q7 + q8 − 3q9 + q10.

4. Bigrassmannian determinant

4.1. Definition. Next we want to understandBn(q) as a new sort of a determinant
as mentioned in Introduction. From now on, we assume that A = (aij) = (aij(q))
is an n by n matrix with entries being complex rational functions in q1/2 (i.e.,
elements of C(q1/2)). The reason why we introduce q1/2 and q−1 will be clearer in
the next subsection.

Definition 4.1. The bigrassmannian determinant of A is

bdet(A) =
∑
w∈Sn

(−1)ℓ(w)qβ(w)

n∏
i=1

aiw(i).

We formally define bdet of the 0 by 0 matrix to be 1.

For example, bdet(a11) = a11, bdet

(
a11 a12
a21 a22

)
= a11a22 − qa12a21 and

bdet

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11a22a33 − qa12a21a33 − qa11a23a32

+ q3a12a23a31 + q3a13a21a32 − q4a13a22a31.
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4.2. Matrix deformation. We now give a more explicit description of the bi-
grassmannian determinant in terms of the original one. For this purpose, let us
introduce a special term: a deformation of A = (aij) is a new matrix fA :=
(fij(q)aij) for some indexed family of rational functions f = {fij(q) ∈ C(q1/2) |
(i, j) ∈ [n] × [n]}. Note that the operation aij 7→ fij(q)aij may not be C(q1/2)-
linear in any rows nor columns. Hence it is in general difficult to predict how
determinants change under such an operation. However, as seen below, there are
some nice cases:

Definition 4.2. Let b = {bij(q)} = {q(i−j)2/2}. The bigrassmannian deformation
of A is βA.

Proposition 4.3. det(βA) = bdet(A).

Proof. By Proposition 3.3, we have

det(βA) =
∑
w∈Sn

(−1)ℓ(w)

n∏
i=1

q(i−w(i))2/2aiw(i)

=
∑
w∈Sn

(−1)ℓ(w)qβ(w)

n∏
i=1

aiw(i)

= bdet(A).

□
Theorem 4.4 (a determinantal expression of Bn(q)). We have

Bn(q) = det(q(i−j)2/2).

Proof. Bn(q) = bdet(1)ni,j=1 = det(β1) = det(q(i−j)2/2). □

Observe determinantal expressions of B3(q) and B4(q):

det

 1 q1/2 q4/2

q1/2 1 q1/2

q4/2 q1/2 1

 = (1− q)2(1− q) and

det


1 q1/2 q4/2 q9/2

q1/2 1 q1/2 q4/2

q4/2 q1/2 1 q1/2

q9/2 q4/2 q1/2 1

 = (1− q)3(1− q2)2(1− q3).

We should now recognize that different deformations may give the same deter-
minant: given a family f , there possibly exists g such that g ̸= f and det(fA) =
det(gA) for all matrices A. In particular, this is the case for β: Let β′ =
{b′ij} = {qi(i−j)} and β′′ = {b′′ij} = {qj(j−i)} (here we need q−1). Then det(βA) =
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det(β′A) = det(β′′A) as shown just below; since we could not find any references
mentioning this little invariance, we here record it as a Corollary.

Corollary 4.5. (little invariance of the determinant)

det(q(i−j)2/2aij) = det(qi(i−j)aij) = det(qj(j−i)aij).

Proof. We only prove the first equality.

det(qi(i−j)aij) =
∑
w∈Sn

(−1)ℓ(w)

n∏
i=1

qi(i−w(i))ai,w(i)

=
∑
w∈Sn

(−1)ℓ(w)qβ(w)

n∏
i=1

ai,w(i) = det(q(i−j)2/2aij).

□
Such “equivalent” deformations may be useful for evaluating and understanding

combinatorial determinants (interpret q(i−j)2/2 as area of the triangle (i, i), (i, j)
and (j, j) in Z2); see Bressoud [2, Section 3.3], Gessel-Viennot [8] and Stembridge
[14], for details on Schur functions and nonintersecting lattice path counting by
determinants. We will develop this idea in subsequent publications.

4.3. Weighted condensation. Our next task is to prove weighted condensation
for bigrassmannian determinants; this is a natural idea as an analogy of the original
determinant (and Robbins-Rumsey [13]). Let A be an n by n matrix with n ≥ 2.
Recall that Aj

i denotes the submatrix with the i-th row and j-th column deleted.

Theorem 4.6.

bdet(A)bdet(A1n
1n) = bdet(A1

1)bdet(A
n
n)− qn−1bdet(A1

n)bdet(A
n
1 ).

Some comments before the proof: Let A = (aij), C = βA = (cij) and cij =

q(i−j)2/2aij. For simplicity, we use | | for the original determinant.
We will confirm the following five statements.

[ 1 ] |C1n
1n | = bdet(A1n

1n).
[ 2 ] |C1

1 | = bdet(A1
1).

[ 3 ] |Cn
n | = bdet(An

n).
[ 4 ] |C1

n| = q(n−1)/2bdet(A1
n).

[ 5 ] |Cn
1 | = q(n−1)/2bdet(An

1 ).

Once we do this, then the conclusion follows from condensation for the original
determinant:

|C||C1n
1n | = |C1

1 ||Cn
n | − |C1

n||Cn
1 |.

Proof. (1) |C1n
1n | = bdet(A1n

1n): an (i, j)-entry of C1n
1n is ci+1,j+1.

|C1n
1n | = |ci+1,j+1|n−2

i,j=1 = |q((i+1)−(j+1))2/2ai+1,j+1|

= |q(i−j)2/2ai+1,j+1| = bdet(A1n
1n).
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(2) |C1
1 | = bdet(A1

1): an (i, j)-entry of C1
1 is ci+1,j+1.

|C1
1 | = |ci+1,j+1|n−1

i,j=1 = |q((i+1)−(j+1))2/2ai+1,j+1|

= |q(i−j)2/2ai+1,j+1| = bdet(A1
1).

(3) |Cn
n | = bdet(An

n):this is similar to (2).
(4) |C1

n| = q(n−1)/2bdet(A1
n): an (i, j)-entry of C1

n is ci,j+1.

|C1
n| = |ci,j+1|n−1

i,j=1 = det(q(i−(j+1))2/2ai,j+1)

= |q((i−j)2−2(i−j)+1)/2ai,j+1| = q−
∑

i+
∑

jq(n−1)/2|q(i−j)2/2ai,j+1| = q(n−1)/2bdet(A1
n).

(5) |Cn
1 | = q(n−1)/2bdet(An

1 ): this is similar to (4).
□

Now we see an immediate consequence which is, however, not so obvious from
the definition of Bn(q).

Corollary 4.7. Signed bigrassmannian polynomials can be defined recursively as

follows: B1(q) = 1, B2(q) = 1− q and Bn(q) =
Bn−1(q)

2

Bn−2(q)
(1− qn−1) for n ≥ 3.

Proof. Apply the weighted condensation to A = (1)ni,j=1. All four determinants in
the numerator are Bn−1(q) while the denominator is Bn−2(q). □

5. Concluding remarks

In this article, we introduced two new ideas, signed bigrassmannian polynomials
and bigrassmannian determinant. We made use of tournaments as well as Vander-
monde determinant to find Bn(q). Then we introduced bdet as a q-analog of de-
terminant as q → 1 recovers the original one. Thanks to formulas of β-statistic, we
obtained a determinantal expression of Bn(q). Moreover, we established weighted
condensation as an analogy of Robbins-Rumsey. After all, we did not find the un-
signed statistic

∑
w∈Sn

qβ(w). Now an easy guess is to use the permanent instead.
We leave this problem here for our future research.
We end with some more comments for subsequent work.

• What is missing in our discussion is an alternating sign matrix (ASM)
[3, 12]. Since inversions and bigrassmannian statistics also make sense
for ASMs, we want to generalize some of our results to these matrices
(note: we can extend β for ASMs as the rank function of a distributive
lattice). For example, what can we say about bdet for ASMs which are
not permutations?.

• We can also define “λq-determinant” by replacing λ with λqn−1 in Robbins-
Rumsey condensation (provided all such minors are nonzero). Then we
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Figure 2. Rothe diagram for 35241

◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ •

◦ • ◦ ◦ ◦

◦ ◦ ◦ • ◦

• ◦ ◦ ◦ ◦

would obtain polynomials of the form
∏
(1 + λqk)n−k, say Bn(λ, q). Then

we can show as Corollary 4.7 that polynomials {Bn(λ, q)} satisfies

Bn(λ, q) =
Bn−1(λ, q)

2

Bn−2(λ, q)
(1 + λqn−1).

Recently, there appeared such recursions and polynomials in the literature
on Aztec diamonds, perfect matchings and domino tilings; see Brualdi-
Kirkland [4], Ciucu [5] and Elkies-Kuperberg-Larsen-Propp [6], for exam-
ple. It would be nice to give an explicit connection between such work and
our results.

• As we mentioned Bruhat order, symmetric groups are Coxeter groups of
type A. It makes sense to speak of a signed bigrassmannian statistic even
in other situations: let (W,S,≤) be a finite Coxeter system with Coxeter
generators S specified and ≤ Bruhat order. Define ℓ(w) = min{l ≥ 0 | w =
s1 · · · sl, si ∈ S} and the sign of w to be (−1)ℓ(w). Say w is bigrassmannian
if there exists a unique pair (s1, s2) ∈ S × S such that ℓ(s1w) < ℓ(w)
and ℓ(ws2) < ℓ(w). Define B(w) = {u bigrassmannian | u ≤ w} and
β(w) = |B(w)| in the same way. Find a statistic

∑
w∈W qβ(w).

• We can think that each permutation w gives a partition of an integer β(w)
with ℓ(w) parts as β(w) =

∑
(i,j)∈N(w)(j − i); see Andrews-Eriksson [1] for

the theory of integer partitions. Then, it is natural to come to the following
idea: Rothe diagram for w is the set {(i, j) ∈ [n]× [n] | i < w−1(j) and j <
w(i)}. As is well-known, the cardinality of this set is ℓ(w). Figure 2 shows
an example; seven circles which does not cross any lines are elements of
Rothe diagram for w = 35241 (with β(w) = 15). Is there any formula to
compute β from Rothe diagrams?



DETERMINANTS AND SIGNED BIGRASSMANNIAN POLYNOMIALS 13

Acknowledgement

The author thanks the anonymous referee for careful reading and advisory com-
ments.

References

[1] G. E. Andrews and K. Eriksson, Integer partitions, Cambridge University Press, Cambridge,
2004.

[2] D. Bressoud, Proofs and confirmations, The story of the alternating sign matrix conjecture,
Cambridge University Press, Cambridge, 1999.

[3] D. Bressoud and J. Propp, How the alternating sign matrix conjecture was solved, Notices
Amer. Math. Soc. 46 (1999), no. 6, 637–646.

[4] R. Brualdi and S. Kirkland, Aztec diamonds and digraphs, and Hankel determinants of
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