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This work is a byproduct of my research on
alternating sign matrices at a crossroad of

enumerative combinatorics,
group theory,
order theory,
linear algebra.
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Definition
For w 2 Sn (n – 2), say (i; j) is an inversion of w if

i < j and w(i) > w(j):

The length of w is

‘(w) = jf(i; j) j i < j and w(i) > w(j)gj:

The sign of w is (`1)‘(w).
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Fact (Linear Algebra)
X

w2Sn
(`1)‘(w) = 0:

What is a q-analog of this? I found this:
X

w2Sn
(`1)‘(w)q˛(w) =

Y

1»i<j»n
(1` qj`i)

where
˛(w) =

X

i;j:inversion of w
(j ` i)

is the bigrassmannian statistics.
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Example

w = 312:

We have
‘(w) = 2

with inversions (3, 1), (3, 2) and moreover

˛(w) = (3` 1) + (3` 2) = 3:
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 213  132

 231  312

 321

‘ = 0, ˛ = 0

‘ = 1, ˛ = 1

‘ = 2, ˛ = 3

‘ = 3, ˛ = 4
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Definition

Bn(q) =
X

w2Sn
(`1)‘(w)q˛(w):

Call this signed bigrassmannian polynomial.

Main theorem (Kobayashi 2015)
For n – 2,

Bn(q) =
Y

1»i<j»n
(1` qj`i)

How to prove this? Need “q-det".
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Fact (Kobayashi 2011)

˛(w) =
1

2

n
X

i=1

(w(i)` i)2:

Here, w(i); i appear together!

q-determinant
For a square matrix A = (aij), let

detq(aij) = det(q(j`i)
2=2aij):

For example,

detq

0

B

B

B

@

1 1 1
1 1 1
1 1 1

1

C

C

C

A

= det

0

B

B

B

@

1 q1=2 q4=2

q1=2 1 q1=2

q4=2 q1=2 1

1

C

C

C

A

:
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We can rephrase
X

w2Sn
(`1)‘(w) = 0

as
det(1)ni;j=1 = 0:

A q-analog of this is

detq(1)ni;j=1 =
X

w2Sn
(`1)‘(w)q(w(1)`1)2=2 ´ ´ ´ q(w(n)`n)2=2

=
X

w2Sn
(`1)‘(w)q˛(w) = Bn(q):

How to compute detq(1)ni;j=1? ! Vandermonde
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Classical Vandermonde

det(xj`1i )ni;j=1 =
Y

1»i<j»n
(xj ` xi):

Its q-analog (Kobayashi)

detq(x
j`1
i )ni;j=1 =

Y

1»i<j»n
(xj ` qj`ixi):

For example,

det

0

B

B

B

@

1 x1 x
2
1

1 x2 x
2
2

1 x3 x
2
3

1

C

C

C

A

= (x2 ` x1)(x3 ` x1)(x3 ` x2)

while

detq

0

B

B

B

@

1 x1 x
2
1

1 x2 x
2
2

1 x3 x
2
3

1

C

C

C

A

= (x2 ` qx1)(x3 ` q2x1)(x3 ` qx2):
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Lemma (Bressoud 1999)

Y

1»i<j»n
(1` qj`i) =

X

w2Sn
(`1)‘(w)q

P

i;j:inversion of w(j`i)

Proof of Main theorem
Let xi = 1 for all i in q-Vandermonde. Then

detq(1) =
Q

1»i<j»n(1` qj`i) =
P

w2Sn(`1)‘(w)q
P

i;j:inversion of w(j`i):

This is nothing but Bn(q), as required.
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Why signed bigrassmannian polynomials?
Because both ‘(w); ˛(w) play a crucial role for the
poset structure of Sn as follows.

Definition
Say w 2 Sn is bigrassmannian if there exists a unique
pair (i; j) 2 f1; 2; : : : ; n` 1g2 such that
w`1(i) > w`1(i+ 1) and w(j) > w(j + 1).

Definition
Define Bruhat order » on Sn as the transitive closure
of the following binary relation: v ! w meaning
w = vtij, for some i < j, tij a transposition and
‘(v) < ‘(w).

Fact
(Sn;»; ‘) is a graded poset.
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‘ = 0

‘ = 1

‘ = 2

‘ = 3

with bigrassmannian permutations.
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4321

3421 4231 4312

3241 2431 3412 4213 4132

3214 2341 3142 2413 4123 1432

2314 3124 2143 1342 1423

2134 1324 1243

1234
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Bigrassmannian permutations play an important role
in Bruhat order.

Definition
Let P be a poset and w 2 P . Say w is
join-irreducible if
1 w is not the minimum of P .
2 w = u1 _ ´ ´ ´ _uk =) w = ui for some i.

Fact (Lascoux-Schützenberger 1996)
For w 2 Sn, the following are equivalent:
1 w is bigrassmannian.
2 w is join-irreducible.
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A finite lattice (L;»;_;^) is distributive if
x _ (y ^ z) = (x _ y) ^ (x _ z);
x ^ (y _ z) = (x ^ y) _ (x ^ z)

for all x; y; z 2 L.
Fact
In a finite distributive lattice L, each w 2 L
(w 6= minL) can be uniquely written as

w = u1 _ ´ ´ ´ _ uk

where ui is join-irreducible.

Fact (MacNeille 1937)
If P is a finite poset, then there exists the smallest
distributive lattice L(P ) containing P .

Call L(P ) the MacNeille completion of P .
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Figure: An example of MacNeille completion
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Fact
Every finite distributive lattice L is a graded poset
ranked by

˛(w) = jfu 2 L j u » w;u is join-irreduciblegj:

Consequence
There exists an extension of Bruhat order » such that
(L(Sn);»; ˛) is graded.

23 / 27



1243 1324 2134

2314

4123

1234

1432

2431

2143

3214

4132

1342

3142

3241

1423

2413

4213

3124

2341

3412

3421 4231 4312

4321

  

 

    

    

    

 

  

B4(q) = (1` q)3(1` q2)2(1` q3) = 1` 3q + q2 + 4q3 ` 2q4 ` 2q5 ` 2q6 + 4q7 + q8 ` 3q9 + q10
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Summary

(Sn;»; ‘)
| {z }

graded

MacNeille completion`̀`̀ `̀ `̀ `̀ !̀ (L(Sn);»; ˛)
| {z }

graded

X

w2Sn
(`1)‘(w) = 0

| {z }

det(1)

q-analog`̀ `̀!
X

w2Sn
(`1)‘(w)q˛(w) =

Y

1»i<j»n
(1` qj`i)

| {z }

detq(1)
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Next?

1 Sn is a Coxeter group of type A. Do the same for
type BC, D, E, : : : .

2 Find a combinatorial interpretation of
q-Vandermonde.
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Thanks!
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