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This work is a byproduct of my research on
alternating sign matrices at a crossroad of

@ enumerative combinatorics,
@ group theory,

@ order theory,

@ Linear algebra.
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Definition
For w € S, (n > 2), say (%, 7) is an inversion of w if

1 < 7 and w(i) > w(g).
The Length of w is
L(w) = [{(4,7) | 1+ <3 and w(i) > w(@)}H.

The sign of w is (—1)¥w),
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Fact (Linear Algebra)

Y. (—1)*™) =o.

WESH

What is a g-analog of this? I found this:
) (=)W =TT (1—-¢79)

WESh 1<i<j<n

where

B(w) = > (J — 1)

7,7:inversion of w

is the bigrassmannian statistics.
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w = 312.

We have
L(w) =2

with inversions (3, 1), (3, 2) and moreover

fw)=CB—-1)+ (3 —-2) =3.
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321

L=3,06=4
231 312 £=2,p0=3
213 132 £=1p6=1
£=0,06=0

123

7/27



Bn(q) = Z (_l)e(w)qﬁ('w)_
WESH

Call this signed bigrassmannian polynomial.

Main theorem (Kobayashi 2015)
For n > 2,

| A

Bn(@) = [] (1—-¢

1<i<ji<n

A\

How to prove this? Need ‘‘g-det".
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Fact (Kobayashi 2011)
12 N
B(w) = = > (w(i) — 1)
=1

Here, w(4), 1 appear together!

g-determinant
For a square matrix A = (a4;), let

det,(ay,;) = det(q¥=9"/2a,;).

For example,
1 ql/2 q4/2

111
det, | 1 1 1 | =det| g2 1 q¥/?
1 1 1 q4/2 q1/2 1
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We can rephrase

L (=D =0

WESH

as
det(1)?,_, = 0.

A g-analog of this is

dety(1),_, = 3 (=1)M@quM=12/2 . glutm=—n)?/2
wWESH

= Y (—1)*®gPW = B,(q).
WESH

How to compute det,(1)7,-,7 — Vandermonde
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Classical Vandermonde

det(z] o = [1 (%5 — z0).
1<i<i<n

4

Its g-analog (Kobayashi)

- o
dety(z; iy = [ (%5 —d'z).
1<i<j<n

For example,

1 z, z2
det| 1 =2 23 | = (22 — 1) (x5 — 1) (T3 — T2)
1 3 23
while
1 =, x3
dety | 1 T2 23 | = (T2 — qz1) (x5 — ¢%°T1) (T3 — qT2).

2
1 25 23 13 /27
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Lemma (Bressoud 1999)

n (1 - q:]_q') == Z (—1)e(w)q2i,j:inversion ofw(j_i)
1<i<i<n WESy

| A

Proof of Main theorem
Let ¢; = 1 for all © in g-VVandermonde. Then

detq(l) = H1§i<j§n(1 _— qj_i) = Ewesn(—1)e(w)qzi,33inversion ofw(j_i)_

This is nothing but B,(q), as required.
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Why signed bigrassmannian polynomials?

Because both £(w), B(w) play a crucial role for the
poset structure of S, as follows.
Definition
Say w € S, is bigrassmannian if there exists a unique
pair (i,7) € {1,2,...,n — 1}? such that
w i) >w i+ 1) and w(g) > w(g +1).

Definition
Define Bruhat order < on S, as the transitive closure
of the following binary relation: v — w meaning

w = vVt4;, for some 1 < 7, t;; a transposition and

L(v) < L(w).

| A

| A\

Fact
(S,,<,2) is a graded poset.
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=3
231 312 =2
213 132 =1
£=0

123

with D bigrassmannian permutations.
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3214 2341 3142 2413

A TEES
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Bigrassmannian permutations play an important role
in Bruhat order.

Definition

Let P be a poset and w € P. Say w is
join-irreducible if

Q@ w is not the minimum of P.

Q@ w=1u V- Vuy =— w = u; for some 1.

Fact (Lascoux-Schiitzenberger 1996)
For w € S,, the following are equivalent:
@ w is bigrassmannian.

@ w is join-irreducible.
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A finite lattice (L, <, V, A) is distributive if
zV((ynz)=(xVy ATV z),
zA(yvz)=(@Ay) V(TAZ)

forall z,vy,z € L.

In a finite distributive Llattice L, each w € L
(w # min L) can be uniquely written as

w=uU1 V- -V U

where u; is join-irreducible.

| A\

Fact (MacNeille 1937)

If P is a finite poset, then there exists the smallest
distributive lattice L(P) containing P.

Call L(P) the MacNeille completion of P.
() P 21 /27



Figure: An example of MacNeille completion
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Every finite distributive Lattice L is a graded poset
ranked by

B(w) =|{u € L | u < w, u is join-irreducible}|.

| \

Consequence

There exists an extension of Bruhat order < such that
(L(Sn), <, B) is graded.

A\
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Bi(q) = (1 —a)*(1 —a?)2(1 — ¢®) =1 — 39+ q% + 4¢° — 29* — 2¢° — 2¢° + 497 + ¢° — 3¢° + q*°
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Summary

(Sn, S, 2) MacNeille compLet’ion> (L(Sn), S, 5)

graded gra\;jed
Y (—1)HW) = L2128,V (_)EWgfW = [T (1 — )
WESH WESh 1<i<j<n
det(1) detq(1)
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Next?

@ S, is a Coxeter group of type A. Do the same for
type BC, D, E, ....

@ Find a combinatorial interpretation of
g-Vandermonde.
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T hanks!
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