q-determinant, q-Vandermonde and signed bigrassmannian polynomials

Masato Kobayashi

Kanagawa University

March 2021

- Introduction
- q-determinant
- q-Vandermonde
- Proof of Main Theorem
- Why signed bigrassmannian permutation polynomials?

This work is a byproduct of my research on alternating sign matrices at a crossroad of

- enumerative combinatorics,
- group theory,
- order theory,
- linear algebra.

Definition

For $w \in S_n$ $(n \ge 2)$, say (i, j) is an **inversion** of w if

$$i < j$$
 and $w(i) > w(j)$.

The **length** of w is

$$\ell(w) = |\{(i, j) \mid i < j \text{ and } w(i) > w(j)\}|.$$

The **sign** of w is $(-1)^{\ell(w)}$.

Fact (Linear Algebra)

$$\sum_{w \in S_n} (-1)^{\ell(w)} = 0.$$

What is a q-analog of this? I found this:

$$\sum\limits_{w\in S_n}(-1)^{\ell(w)}q^{eta(w)}=\prod\limits_{1\leq i< j\leq n}(1-q^{j-i})$$

where

$$eta(w) = \sum\limits_{i,j: ext{inversion of } w} (j-i)$$

is the bigrassmannian statistics.

Example

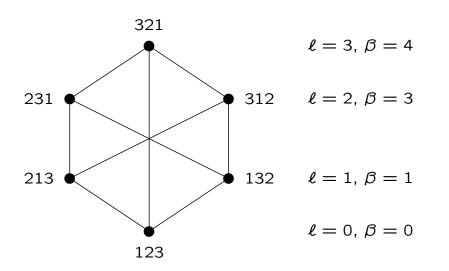
$$w = 312.$$

We have

$$\ell(w) = 2$$

with inversions (3, 1), (3, 2) and moreover

$$\beta(w) = (3-1) + (3-2) = 3.$$



Definition

$$B_n(q) = \sum_{w \in S_n} (-1)^{\ell(w)} q^{\beta(w)}.$$

Call this signed bigrassmannian polynomial.

Main theorem (Kobayashi 2015)

For n > 2,

$$B_n(q) = \prod_{1 \le i \le j \le n} (1 - q^{j-i})$$

How to prove this? Need "q-det".

- Introduction
- q-determinant
- q-Vandermonde
- Proof of Main Theorem
- Why signed bigrassmannian permutation polynomials?

Fact (Kobayashi 2011)

$$\beta(w) = \frac{1}{2} \sum_{i=1}^{n} (w(i) - i)^{2}.$$

Here, w(i), i appear together!

q-determinant

For a square matrix $A=(a_{ij})$, let

$$\det_q(a_{ij}) = \det(q^{(j-i)^2/2}a_{ij}).$$

For example,

$$\det_q \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right) = \det \left(\begin{array}{ccc} 1 & q^{1/2} & q^{4/2} \\ q^{1/2} & 1 & q^{1/2} \\ q^{4/2} & q^{1/2} & 1 \end{array} \right).$$

We can rephrase

$$\sum_{w \in S_n} (-1)^{\ell(w)} = 0$$

as

$$\det(1)_{i,i=1}^n = 0.$$

A q-analog of this is

$$\begin{aligned} \det_q(1)_{i,j=1}^n &= \sum_{w \in S_n} (-1)^{\ell(w)} q^{(w(1)-1)^2/2} \cdots q^{(w(n)-n)^2/2} \\ &= \sum_{w \in S_n} (-1)^{\ell(w)} q^{\beta(w)} = B_n(q). \end{aligned}$$

How to compute $\det_q(1)_{i,j=1}^n$? \to Vandermonde

- Introduction
- q-determinant
- g-Vandermonde
- Proof of Main Theorem
- Why signed bigrassmannian permutation polynomials?

Classical Vandermonde

$$\det(x_i^{j-1})_{i,j=1}^n = \prod\limits_{1 \leq i < j \leq n} (x_j - x_i).$$

Its q-analog (Kobayashi)

$$\det_q(x_i^{j-1})_{i,j=1}^n = \prod\limits_{1 \leq i < j \leq n} (x_j - q^{j-i}x_i).$$

For example.

$$\det \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{pmatrix}$$

$$\det \left(egin{array}{ccc} 1 & x_1 & x_1^2 \ 1 & x_2 & x_2^2 \ 1 & x_3 & x_3^2 \end{array}
ight) = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2)$$

$$\det_q \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{pmatrix} = (x_2 - qx_1)(x_3 - q^2x_1)(x_3 - qx_2).$$
13 / 27

- Introduction
- q-determinant
- q-Vandermonde
- Proof of Main Theorem
- Why signed bigrassmannian permutation polynomials?

Lemma (Bressoud 1999)

$$\prod_{1 \leq i < j \leq n} (1-q^{j-i}) = \sum_{w \in S_n} (-1)^{\ell(w)} q^{\sum_{i,j: ext{inversion of } w} (j-i)}$$

Proof of Main theorem

Let $x_i = 1$ for all i in q-Vandermonde. Then

$$\det_q(1) = \prod_{1 \leq i < j \leq n} (1-q^{j-i}) = \sum_{w \in S_n} (-1)^{\ell(w)} q^{\sum_{i,j: \text{inversion of } w}(j-i)}.$$

This is nothing but $B_n(q)$, as required.

- Introduction
- q-determinant
- q-Vandermonde
- Proof of Main Theorem
- Why signed bigrassmannian permutation polynomials?

Why signed bigrassmannian polynomials?

Because both $\ell(w)$, $\beta(w)$ play a crucial role for the poset structure of S_n as follows.

Definition

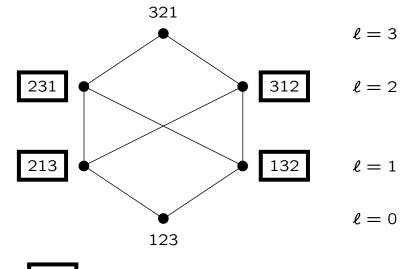
Say $w \in S_n$ is **bigrassmannian** if there exists a unique pair $(i, j) \in \{1, 2, ..., n-1\}^2$ such that $w^{-1}(i) > w^{-1}(i+1)$ and w(j) > w(j+1).

Definition

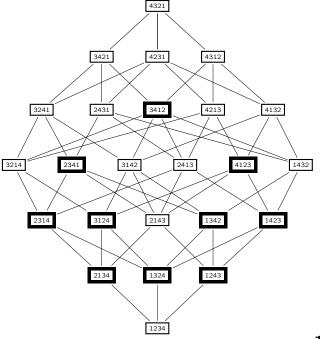
Define **Bruhat order** \leq on S_n as the transitive closure of the following binary relation: $v \to w$ meaning $w = vt_{ij}$, for some i < j, t_{ij} a transposition and $\ell(v) < \ell(w)$.

Fact

 (S_n, \leq, ℓ) is a graded poset.



with bigrassmannian permutations.



Bigrassmannian permutations play an important role in Bruhat order.

Definition

Let P be a poset and $w \in P$. Say w is **join-irreducible** if

- \bigcirc w is not the minimum of P.

Fact (Lascoux-Schützenberger 1996)

For $w \in S_n$, the following are equivalent:

- \bullet w is bigrassmannian.

A finite lattice (L, \leq, \vee, \wedge) is **distributive** if $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z),$ $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ for all $x, y, z \in L$.

Fact

In a finite distributive lattice L, each $w \in L$ $(w \neq \min L)$ can be uniquely written as

$$w=u_1\vee \dots \vee u_k$$

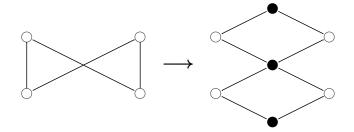
where u_i is join-irreducible.

Fact (MacNeille 1937)

If P is a finite poset, then there exists the smallest distributive lattice L(P) containing P.

Call L(P) the MacNeille completion of P. 21/27

Figure: An example of MacNeille completion



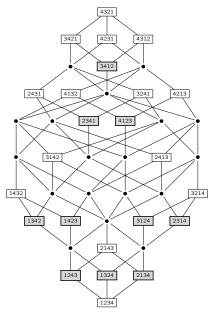
Fact

Every finite distributive lattice L is a graded poset ranked by

$$\beta(w) = |\{u \in L \mid u \leq w, u \text{ is join-irreducible}\}|.$$

Consequence

There exists an extension of Bruhat order \leq such that $(L(S_n), \leq, \beta)$ is graded.



 $B_4(q) = (1-q)^3(1-q^2)^2(1-q^3) = 1 - 3q + q^2 + 4q^3 - 2q^4 - 2q^5 - 2q^6 + 4q^7 + q^8 - 3q^9 + q^{10}$

24 / 27

Summary

$$\underbrace{(S_n, \leq, \ell)}_{\textit{graded}} \xrightarrow{\textit{MacNeille completion}} \underbrace{(L(S_n), \leq, \beta)}_{\textit{graded}}$$

$$\underbrace{\sum_{w \in S_n} (-1)^{\ell(w)} = 0}_{\text{det}(1)} \xrightarrow{\text{q-analog}} \underbrace{\sum_{w \in \mathbf{S_n}} (-1)^{\ell(w)} \mathbf{q}^{\beta(w)}}_{\text{det}_q(1)} = \underbrace{\prod_{1 \le i < j \le n} (1 - \mathbf{q}^{j-i})}_{\text{det}_q(1)}$$

Next?

- S_n is a Coxeter group of type A. Do the same for type BC, D, E,
- Find a combinatorial interpretation of q-Vandermonde.

Thanks!

- M. Kobayashi, Enumeration of bigrassmannian permutations below a permutation in Bruhat order, Order 28 (2011), no. 1, 131-137.
- M. Kobayashi, Enumerative Combinatorics of determinants and signed bigrassmannian polynomials, Okayama Math. J. 57 (2015), 159-172.