ゼータ 9 <u>累乗数と重複ゼー</u>タ級数

連続講義第 10 回 小林雅人

神奈川大学&一橋大学

2021年7月5日

今日の話

累乗重複度という新しいアイディアをもとに、**重複ゼータ級数** $\zeta_{\text{mult}}(2), \zeta_{\text{mult}}(4)$ の値を計算

(2021年9月に日本数学会で発表予定)

ゼータ関数

 $s \ge 2$ を満たす自然数 s に対して、

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

$$\zeta(3) = \frac{1}{1^3} + \frac{1}{2^3} + \frac{1}{3^3} + \cdots$$

$$\zeta(4) = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \cdots$$

$$\zeta(5) = \frac{1}{1^5} + \frac{1}{2^5} + \frac{1}{3^5} + \cdots$$

ゼータ偶数値は次のようになる。

2 <i>s</i>	$\zeta(2s)$	2 <i>s</i>	$\zeta(2s)$
2	$\frac{\pi^2}{}$ 12	$691\pi^{12}$	
	6	12	638512875
4	π^4	14	$2\pi^{14}$
	90		18243225
6	$\pi^{\scriptscriptstyle 6}$	16	$3617\pi^{16}$
	945		325641566250
8	$\pi^{\scriptscriptstyle 8}$	18	$43867\pi^{18}$
	9450		38979295480125
10	π^{10}	20	$174611\pi^{20}$
	93555		1531329465290625

$$\zeta(2s)$$
 は、 1 にかなり近い。

$$\zeta(2) = \frac{\pi^2}{6} = 1.64493 \cdots,$$

$$\zeta(4) = \frac{\pi^4}{90} = 1.08232 \cdots,$$

$$\zeta(6) = \frac{\pi^6}{945} = 1.010734 \cdots,$$

$$\zeta(8) = \frac{\pi^8}{9450} = 1.004077 \cdots,$$

$$\zeta(10) = \frac{\pi^{10}}{93555} = 1.00099 \cdots$$

実際、 $\{\zeta(2s)\}$ は $s o\infty$ で 1 に近づいていく。

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

の拡張として、重複ゼータ級数

$$\zeta_{\mathsf{mult}}(s) = \sum_{n=1}^{\infty} \frac{\mathsf{mult}(n)}{n^s}$$

のようなものを考えてみたい。 ただし、mult(n) は自然数で累乗重複度。

累乗数

自然数 *N* が<mark>累乗数</mark>であるとは、

$$N=m^n$$
, m,n は自然数, $n \ge 2$

と表せることをいう。

累乗数の例

$$1, 4, 8, 9, 16, 25, 27, 32, \cdots$$

 $\zeta(n)$ は n 乗数の逆数の和

$$\zeta(n)(n \ge 2)$$
 を全部足すと?

$$\zeta(2) = \mathbf{1} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$$

$$\zeta(3) = \mathbf{1} + \frac{1}{2^3} + \frac{1}{3^3} + \cdots$$

$$\zeta(4) = \mathbf{1} + \frac{1}{2^4} + \frac{1}{3^4} + \cdots$$

$$\zeta(5) = \mathbf{1} + \frac{1}{2^5} + \frac{1}{3^5} + \cdots$$

"1"があるため、これらの総和は無限大に発散する。これでは少し面白くないので、1 は除いて考える方がよい。

狭義の累乗数

自然数 N が狭義の累乗数であるとは、

$$N=m^n$$
, $n \geq 2$

かつ $N \neq 1$ が成り立つことをいう。

では、 $\zeta(n) - 1(n \ge 2)$ を全部足すと?

$$\zeta(2) - 1 = \frac{1}{2^2} + \frac{1}{3^2} + \cdots$$

$$\zeta(3) - 1 = \frac{1}{2^3} + \frac{1}{3^3} + \cdots$$

$$\zeta(4) - 1 = \frac{1}{2^4} + \frac{1}{3^4} + \cdots$$

$$\zeta(5) - 1 = \frac{1}{2^5} + \frac{1}{3^5} + \cdots$$

$$\cdots$$

実は、これらの総和は有限値になる。有限値どころか、整数である。

$$\zeta(2) - 1 = 0.6449...$$

 $\zeta(3) - 1 = 0.2020...$
 $\zeta(4) - 1 = 0.0823...$
 $\zeta(5) - 1 = 0.0369...$

定理(Shallit-Zikan 1983)

$$\sum_{n=2}^{\infty} (\zeta(n) - 1) = 1.$$

注意:

$$\sum_{n=0}^{\infty} (\zeta(n) - 1) = 1$$

は、書き換えると

$$\sum_{m=2}^{\infty}\sum_{n=2}^{\infty}\frac{1}{m^n}=1$$

となる。この等式を示せばよい。

証明.

$$\sum_{n=2}^{\infty} \frac{1}{m^n} = \frac{1}{m^2} \sum_{n=0}^{\infty} \left(\frac{1}{m}\right)^n = \frac{1}{m^2} \left(\frac{1}{1 - \frac{1}{m}}\right) = \frac{1}{m(m-1)} = \frac{1}{m-1} - \frac{1}{m}$$

であるから、

$$\sum_{n=2}^{\infty} (\zeta(n) - 1) = \sum_{m=2}^{\infty} \sum_{n=2}^{\infty} \frac{1}{m^n}$$
$$= \sum_{m=2}^{\infty} \left(\frac{1}{m-1} - \frac{1}{m} \right) = 1.$$

同様にして

$$\sum_{n=1}^{\infty} (\zeta(2n) - 1) = \frac{3}{4}$$

も示せる。

注意:

$$\sum_{n=0}^{\infty} (\zeta(n) - 1) = \frac{1}{4} + \frac{1}{8} + \frac{1}{9} + \frac{2}{16} + \frac{1}{25} + \dots + \frac{3}{64} + \dots$$

は単に狭義累乗数の逆数の和ではない。重複がある。

例えば

$$16 = 2^4 = 4^2$$

だから、

$$\frac{1}{16}$$

は $\zeta(2)$ と $\zeta(4)$ に 1 回ずつ(計 2 回)出て来る。また、

$$\frac{1}{64}$$

は $\zeta(2)$, $\zeta(3)$, $\zeta(6)$ に 1 回ずつ(計 3 回)出て来る。

では、一般に自然数 N を n^m のように表す方法は何通り?

累乗重複度

mult(N)

を $N=n^m$, (m,n) は自然数)と表す方法の個数とする。ただし、 $\mathrm{mult}(1)=1$ と定める。

(ここではm=1も許している)

mult(N) の計算法

N を素因数分解して

$$N = p_1^{a_1} \cdots p_k^{a_k}$$
,

 p_i は素数、 a_i は自然数とする。

$$\operatorname{mult}(N) = (a_1, \ldots, a_k)$$
 の公約数の個数

例

$$N = 64 = 2^6$$

"6"の公約数は 4 つあるから、mult(64) = 4.

$$N = 2^8 3^{12}$$

8, 12 の公約数は 3 つあるから、

$$mult(2^83^{12}) = 3.$$

考察

- すべての N に対して、mult(N) > 1.
- N が狭義の累乗数 ← mult(N) > 2.
- p が素数ならば mult(p) = 1.

mult の不等式

 $N \neq 1$ のとき、

$$mult(N^2) > mult(N) + 1$$
.

証明:自然数 N に対して、 $N=n^m$, $(n\geq 2)$ という表現があれば、 $N^2=n^{2m}$, $(n\geq 2)$ が成り立つ。さらに、 N^2 にはもう 1 つ" $(N^2)^1$ "という自明な累乗表現があるから、

$$mult(N^2) > mult(N) + 1$$
.

定理 $1(\zeta_{mult}(2))$

$$\sum_{N=1}^{\infty} \frac{\text{mult}(N)}{N^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{2}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{3}{8^2} + \frac{2}{9^2} + \cdots$$

$$=\frac{7}{4}=1.75.$$

比較:

$$\zeta(2) = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = 1.644 \dots$$

証明: Shallit-Zikan の定理を使う。

$$\sum_{N=1}^{\infty} \frac{\text{mult}(N)}{N^2} = 1 + (\sum_{n=1}^{\infty} \zeta(2n) - 1) = 1 + \frac{3}{4} = \frac{7}{4}.$$

定理 2(ζ_{mult}(4))

$$\sum_{N=1}^{\infty} \frac{\text{mult}(N)}{N^4} = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{2}{4^4} + \frac{1}{5^4} + \frac{1}{6^4} + \frac{1}{7^4} + \frac{3}{8^4} + \frac{2}{9^4} + \cdots$$
$$= \frac{15}{8} - \frac{\pi}{4} \coth(\pi) = 1.0866 \cdots$$

$$\zeta(4) = 1.0823...$$

証明:Shallit-Zikan の定理

$$\sum_{n=1}^{\infty} (\zeta(2n) - 1) = \frac{3}{4}$$

لح

定理(山形さんのゼータワンの結果の系)

$$\sum_{n=1}^{\infty} (-1)^{n-1} (\zeta(2n) - 1) = -1 + \frac{\pi}{2} \coth(\pi).$$

を使う。

$$(\zeta(2)-1)-(\zeta(4)-1)+(\zeta(6)-1)-\cdots=-1+\frac{\pi}{2}\coth(\pi)$$
を引いて 2 で割ると
$$(\zeta(4)-1)+(\zeta(8)-1)+\cdots=\frac{7}{8}-\frac{\pi}{4}\coth(\pi)$$

 $\sum_{N=1}^{\infty} \frac{\text{mult}(N)}{N^4} = \frac{15}{8} - \frac{\pi}{4} \coth(\pi)$

 $(\zeta(2)-1)+(\zeta(4)-1)+(\zeta(6)-1)+\cdots=\frac{3}{4}$

を得る。

を得る。この両辺に1を足すと

つまり、

から

27 / 29

展望

- 他の重複ゼータ級数の計算 例えば $\zeta_{\text{mult}}(6), \zeta_{\text{mult}}(8)$.
- mult の性質を調べる。

$$\operatorname{mult}(N^3) = ?$$

$$mult(N^4) = ?$$

ありがとうございました。

文献:

- 山形さんのゼータワン関数
- https://ja.wikipedia.org/wiki/リーマンゼータ関数